

Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage

Ping Liu and John Vajo HRL Laboratories, LLC Malibu, CA

June 9, 2010

Project ID # ST065

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project start date: March 2005
- Project end date: Feb 2010
- Percent complete: 100%

Budget

Total Project Funding:

Phase I and II: \$2.75M

- DOE Share: \$2.0M
- Contractor Share: \$0.75M
- Funding received in FY10:
 \$ 0 K

Technical Barriers

- A. System weight and volume
- C. Efficiency
- E. Charging and discharge rates

Partners

MHCoE collaborations:

- U. Pitt, Georgia Tech: modeling of new systems and kinetic barriers
- Caltech, JPL, NIST: scaffolds characterization

- DOE collaborations:

- -LLNL: carbon scaffold synthesis
- -Washington Univ. : scaffold NMR

Relevance-

Overall

To develop and demonstrate a safe and cost-effective lightmetal hydride material system that meets or exceeds the DOE goals for reversible on-board hydrogen storage

2009/2010

1. Complete characterization of LiBH₄/MgX, X = Ni destabilized system

- Determine thermodynamic destabilization (ΔH and ΔS)
- Determine reaction path (is new reaction path accessible in mixture?)
- Addresses Barriers A, C, and E.
- 2. Incorporate complete $LiBH_4/MgH_2$ destabilized hydride system into carbon aerogel
 - Increase hydrogen exchange rate through nanoengineering
 - · Achieve and characterize intimate mixture within pores of aerogel
 - Addresses Barriers C and E

3. Improve kinetics of $LiBH_4/MgX$, X = F destabilized system

- Increase hydrogen exchange rate using catalysts and processing (milling)
- Addresses Barriers C and E

Approach-

Technical Approach

Hydride Destabilization

(addresses thermodynamics)

Reduce reaction enthalpy by forming dehydrogenated alloy

- If alloy is stable w.r.t metal then hydride is destabilized
- System cycles between H-containing state and metal alloy
 → lower △H

Destabilization results in lower $\triangle H$ and $T_{1 bar}$

From Petricevic, et al., Carbon 39, 857 (2001)

Nano-engineering

(addresses kinetics)

Decrease diffusion distances, nanoporous scaffolding

- Shorter diffusion distances: faster hydrogen exchange
- More efficient catalysis pathways
- Nano-scaffolds as hosts for nanostructured hydrides:
 - → structure- directing agents, mitigate particle agglomeration

Enhanced reaction rate and improved cycling

Approach-

Status as of March 2009:

- Observed low temperature step for the LiBH₄/Mg₂NiH₄ system; hydrogenation of ternary boride confirmed
- Achieved sequential incorporation of LiBH₄ and MgH₂ into carbon aerogel; cycling poor, unidentified peak in NMR
- LiBH₄/MgF₂ destabilized system only partially reversible

Month/Year	Milestone or Go/No-Go Decision		
Sept-09	Milestone: Complete investigation of ternary boride system. Completed characterization of the Mg-Ni-B system		

Technical Accomplishments –

1. LiBH₄/Mg₂NiH₄ Destabilized System

- For mixture, a 1st dehydrogenation step occurs at temperatures lower than either component. This indicates first example of kinetic coupling (ie, opening of a new reaction pathway)
- Kinetics are better than LiBH₄/MgH₂ (possibly due to catalytic nature of Ni in [NiH₄]²⁻ anion)
- Reaction produces MgNi_{2 5}B₂ (example of a reversible ternary boride, many others may exist)
- P_{eq} ~10x P_{eq} for LiBH₄/MgH₂ system (sufficient for PEM system)
- ΔH is low (due to stability of MgNi_{2.5}B₂, calc. $\Delta H_f = -323 \text{ kJ/mol}$
- ΔS is low (possibly due to two complex hydrides in hydrogenated state)
- Stable cycling of 10 cycles but capacity is low

Technical Accomplishments -

2. LiBH₄/MgH₂ System in Carbon Aerogel

Summary of attempts to achieve well mixed 2:1 LiBH₄:MgH₂ in aerogel

- 1. Sequential incorporation MgH₂ then LiBH₄ or vice versa:
 - improved kinetics on 1st cycle
 - however, poor coupling (little MgB₂ with unidentified phase) and poor cycling
- 2. Sequential incorporation LiBH₄ followed by complete dehydrogenation (at 670 ° C) then MgH₂:
 - low capacity (~4 wt%) and poor cycling
- 3. Simultaneous incorporation (LiBH₄ + Bu₂Mg)/DEE (diethyl ether) hydrogenated at 170 °C in 55 bar H₂:
 - significant reaction of LiBH₄ with DEE (from NMR)
 - LiBH₄:MgH₂ > 2.5 (could not control ratio)
- 4. Simultaneous incorporation $(LiBH_4 + Bu_2Mg)/DEE$ followed by evaporation of DEE, then hydrogenation at 170 °C in 55 bar H₂:
 - LiBH₄:MgH₂ = 0.01 (evaporation excluded LiBH₄ from aerogel)
- 5. Simultaneous incorporation (LiBH₄ + Bu₂Mg)/DEE followed by freezing and evaporation of DEE during warming, then hydrogenation at 170 °C in 55 bar H₂:
 LiBH₄:MgH₂ = 1.61 (sample currently being tested)
 - Sequential incorporation leads to poor mixing
 - For simultaneous incorporation, transition from soluble to insoluble species must be subtly controlled (to achieve proper composition)

Technical Accomplishments -

Intensity

LABORATORIES NMR of LIBH₄/MgH₂ in Carbon Aerogel

Chemical Shift (ppm)

- Dehydrogenation produces some MgB₂
- However, major product is unidentified phase at ~ 30 ppm
- Amount of MgB₂ is reduced on 2nd cycle (consistent with reduced capacity)

Technical Accomplishments -

LABORATORIES

Identification of New Phase

• New phase formation does not require Mg, indicative of poor mixing

Appears associated with LiBH₄/aerogel interaction during dehydrogenation

HRL

Time (hr)

- On 1st cycle, kinetics are good without catalyst
- On 2nd cycle Mg feature indicates poor reversibility during dehydrogenation
- Addition of 3% TiCl₃ improves kinetics

Technical Accomplishments –

LABORATORIES

LiBH₄/MgF₂ System: Dehydrogenation

Combination of extended milling and catalyst enables full reversibility

- Center partners
 - David Sholl (Georgia Tech) and Karl Johnson (U. Pitt): performed calculations of Li-Mg-Ni-B system
 - S-J Hwang (JPL): NMR studies of ternary hydrides and scaffolds
 - Jason Zan (JPL): preparation of LiB₁₂H₁₂/MgH₂ samples for Sieverts testing
- DOE partners
 - Ted Baumann (LLNL): provided porous carbon materials
 - Mark Conradi (Wash U): characterized LiBH₄@aerogel samples with NMR

Destabilized Systems

- Further work on transition metal complex hydride anion systems
 - Test other transition metal complex hydrides (eg, Mg₂FeH₆, Mg₂CoH₅, etc.)
 - Test other transition metal ternary borides (*MgTmB_x*) for reversible hydrogenation activity
 - Search (experimental/computational) for new ternary (or higher) borides
- Study effect of solid/solid interface on kinetics
 - Characterize interfacial area and structure (including effects of additives and processing)
 - Correlate area and structure with kinetics
 - Determine interface energies computationally (correlate with kinetics)

Nanoporous Scaffolds

- Continue work on LiBH₄/MgH₂ system in scaffolds
 - Optimize simultaneous incorporation techniques (achieve intimate mixing in pores)
 - Incorporate catalysts (to further improve kinetics)
 - Vary scaffold structure (beyond aerogels)
- Elucidate mechanism of kinetic enhancement
 - Understand nature/origin of fast diffusing species (seen with NMR)
 - Determine nature of scaffold hydride interactions (effects of surface chemistry)
- Search for thermodynamic effects in sub 2 nm pore scaffolds

Summary

New Destabilized Systems

- Completed work on LiBH₄/Mg₂NiH₄ system
 - System is kinetically coupled (reaction proceeds through new pathway enabled by mixture)
 - $\Delta H = 15 kJ/mol-H_2$ and $\Delta S = 62 J/K-mol-H_2$ are the lowest reported so far for a reversible system; this is very advantageous for practical systems
 - This system demonstrates that the full benefits of destabilized systems (improved thermodynamics and new reaction paths) can be realized
- Demonstrated complete reversibility in LiBH₄/MgF₂ system
 - Combination of extended milling (10 hr) and catalyst (3% TiCl₃) enabled full reversibility

Nanoporous Scaffolds

- Progress on simultaneous incorporation of LiBH₄/MgH₂ into aerogel
 - Determined that achieving good mixing necessitates carefully controlling the soluble to insoluble species transition
 - The new ¹¹B species observed by NMR (at 30 ppm) involves a Li-B-C phase and does not require Mg

Supplemental Slides

Destabilized System	Benchmark	2009 Status	2009/10 Progress	Future
LiBH₄ / MgH₂ @C aerogel 11.4 wt.%, 0.095 kg/L w/o aerogel, est. T _{1 bar} =170° C	Could meet 2015 system weight and volume capacity goals (assuming 25% aerogel and additional 25% system penalties)	 Incorporated complete destabilized system into aerogel Reaction temperature lowered but with degradation Mesoporous carbon synthesized and shows promise for improved kinetics 	•Explored various approaches to incorporate LiBH ₄ and MgH ₂ into aerogel simultaneously and sequentially	 Optimize loading and composition Complete characterization of hydrogen exchange kinetics Incorporate catalysts; optimize scaffold
LiBH₄ / Mg₂NiH₄ 8.3 wt%, est. T _{1 bar} =150° C	Could meet 2015 system capacity goal (but only small system penalty)	 Measured T_{1bar} of 65°C for low temperature step Hydrogenation of ternary boride confirmed 	•Completed thermodynamic characterization; found low ΔH of 15 kJ/mol and low ΔS of 62 J/K-mol	 Candidate for incorporation into scaffold Candidate for catalyst screening Search for other ternary hydrides with higher capacities
LiBH ₄ / MgF ₂ 7.6 wt%, est. T _{1 bar} =150°C	Could meet 2015 system capacity goal (but only small system penalty)	 Partially reversible with degradation 	•Combination of extended milling and addition of catalysts lead to a fully reversible, stable cycling system	•Candidate for incorporation into scaffold