

Neutron Characterization and Calphad in support of the Metal Hydride Center of Excellence

Terrence J. Udovic Ursula R. Kattner

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

June 9, 2010

ST067

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start FY05
- Project end FY10
- 100% complete

Budget

	<u>FY</u>	<u>HSCoE</u>	<u>MHCoE</u>
•	FY09	\$234K	\$298K
•	FY10	\$235K	\$299K

NIST continues to provide access to neutron facilities and FTEs for the HSCoE and MHCoE.

NIST Associates

Nina Verdal Hui Wu Jae-Hyuk Her Wei Zhou John J. Rush

Barriers addressed

- A. System Weight and Volume
- P. Lack of Understanding of Hydrogen Physisorption and Chemisorption

MHCoE Partners

- Caltech, GM, HRL, JPL, Lawrence-Livermore, Maryland, Michigan, Missouri-Columbia, Ohio State, Penn, Sandia, Stanford – Neutron-based Characterization
- Georgia Tech, Illinois, Missouri-St. Louis, Pittsburgh, Sandia
 - Calphad Calculations
- Sandia

 Project Lead

- **Overall:** Support the development of hydrogen-storage materials by providing timely, comprehensive characterization of Center-developed materials and storage systems using state-of-the-art neutron methods and Calphad. Use this information to speed the development and optimization of storage materials that can meet the 2010 DOE system goals of 6 wt% and 45 g/L capacities.
- Characterize structures, compositions, hydrogen dynamics, and absorption-site interaction potentials for candidate storage materials.
- Provide Calphad calculations of phase relationships of potentially promising hydrides.

Detailed neutron studies and thermodynamic evaluations (Calphad) in support of the Center's go/no-go analysis

Month/Year	Milestone
Sep-09 (Complete)	Evaluate structural and bonding properties of new materials selected through discussions with the leadership of the Center and coordinating council (e.g., $Na_2B_{12}H_{12}$, $CaB_{12}H_{12}$, and $CaAIH_4BH_4$)
Apr-09 (Complete)	Develop descriptions for borane gas species and the Mg-B-H system including the $Mg(BH_4)_2$ compound.
Sep-09 (Complete)	Develop descriptions for Ca and Mg hydro- <i>closo</i> -borates.

Approach

Neutron methods

- determine elemental compositions of materials (prompt-γ activation analysis and neutron reflectometry of H stoichiometries and profiles)
- determine location of H and crystal structures of materials (neutron diffraction superior to XRD for "seeing" light H and D)
- determine bonding of absorbed H (unlike IR and Raman, neutron vibrational spectroscopy "sees" all H vibrations for straightforward comparison with first-principles calculations)
- elucidate H diffusion mechanisms (faster dynamics timescale of neutron quasielastic scattering complements NMR; transport mechanisms gleaned from momentum transfer dependence)

Calphad methods

- develop a thermodynamic database from the available literature and first-principles calculations
- incorporate database into an overall temperature-pressurecomposition framework for multicomponent metal-hydrogen systems 5

Neutron methods, synthesis expertise, and Calphad and DFT computations were used to further the goals of the MHCoE.

• We characterized the structure, dynamics, thermodynamics, and reactivity of various $M_x B_{12} H_{12}$ compounds because they are potentially key intermediates in the hydrogen cycling of the borohydrides.

• We characterized the rotational dynamics of BH₄⁻ and B₁₂H₁₂²⁻ anions in bulk compounds as a baseline for comparison with the dynamics found for nanoconfined compounds. Changes in rotational dynamics reflect changes in thermodynamic properties.

• We continued to characterize various aspects of nanoconfinement in an attempt to understand its effect on the hydrogen cycling of LiBH₄.

• We synthesized new mixed-anion complex hydrides that have potentially favorable cycling behavior for hydrogen storage.

• We characterized the hydrogen cycling of Mg thin films to understand the fundamental mechanisms involved.

• We continued to expand our Calphad thermodynamic database to include new compounds of importance to hydrogen storage research.

NIST Characterization of MB₁₂H₁₂ Compounds

Technical Accomplishment Collaboration with Sandia, JPL, Caltech, and Maryland

Motivation: to characterize hydrogen cycling intermediates in light-metal borohydrides, where structural and thermodynamic data are lacking

predicted structure from Ozolins et al., JACS 131, 230 (2009)

show significant similarities. * The neutron vibrational spectrum of amorphous $MgB_{12}H_{12}$ suggests the presence of 7 short-range order resembling the predicted crystalline structure.

Collaboration with Sandia, JPL, Caltech, and Maryland

NVS, XRD, and DFT were used to determine the structures of the heaviest stable MB₁₂H₁₂ compounds

XRD refinement for SrB₁₂H₁₂

SrB₁₂H₁₂ and BaB₁₂H₁₂ viewed along the *c*-axis

Neutron vibrational spectra are consistent with the observed and calculated structures.

* Two other relevant MB₁₂H₁₂ structures were solved by XRD, NVS, and DFT.

Technical Accomplishment

Collaboration with Sandia

Motivation: to investigate the hydrogenation behavior of $A_2B_{12}H_{12}$ + 10AH mixtures, intermediates in the cycling of alkali-metal borohydrides

NV spectral comparison of hydrogenated $Li_2B_{12}H_{12}$ + 10LiH and $Na_2B_{12}H_{12}$ + 10NaH mixtures with pure compounds

Hydrogenations of $A_2B_{12}H_{12}$ + 10AH mixtures were performed at 500°C and 90 MPa H₂.

Comparison of NV spectra indicate that these hydrogenations produced the corresponding ABH₄ compounds.

9

* The hydrogenation of these intermediates is possible under the right conditions.

WE REAL The Rotational Dynamics of $[B_{12}H_{12}]^{2-}$ Anions NIST

Technical Accomplishment Collaboration with Sandia and Maryland

Motivation: to help characterize the dynamics of borohydride intermediates

Quasielastic neutron scattering (QENS) data for $Cs_2(^{11}B)_{12}H_{12}$ was measured near 500 K.

* QENS data suggest that the $[B_{12}H_{12}]^{2-}$ anion prefers C_3 -axial rotation near 500 K. ¹⁰

The Rotational Dynamics of BH₄- Anions

Technical Accomplishment Collaboration with Maryland and Michigan

Motivation: to investigate BH₄⁻ rotational dynamics in light-metal borohydrides

Rotational dynamics for NaBH₄ and KBH₄ were characterized by QENS

ENTER OF

QENS data for the low-T ordered phase of NaBH₄, indicating BH_{4^-} rotations occur by a combination of two- and three-fold jumps

two-fold jumps

three-fold jumps

The BH₄⁻ hydrogen atoms in the high-T cubic phases reorient by jumping to the corner positions of a cube

Activation energies determined from Arrhenius plots of quasielastic linewidths: 13.4 ± 0.8 kJ/mol NaBH₄ (low-T phase) 11.9 ± 0.5 kJ/mol NaBH₄ (high-T phase) 14.6 ± 0.5 kJ/mol KBH₄ (high-T phase)

EISFs at different T compared to models for jumps along the C_4 -axes (solid line) and for isotropic rotational diffusion (dashed line)

*The extended momentum transfer range is necessary to distinguish between different ¹¹ reorientational models.

Technical Accomplishment Collaboration with HRL, Lawrence Livermore, Maryland, and Michigan

Motivation: to characterize the properties of nanoconfined LiBH₄

LiBH₄ vibrational modes in the carbon aerogel exhibit a minor (~10%) broadening compared to bulk LiBH₄ modes SANS suggests that the smallest pores fill first, and there is no change in apparent mesopore geometry with filling

*We need to understand the relationship between pore morphology and filling behavior of nanoconfined storage materials.

NV spectra of LiBH₄ in 13 nm carbon aerogels

Technical Accomplishment Collaboration with HRL, Lawrence Livermore, Maryland, and Michigan

Motivation: to investigate borohydride dynamics perturbations in carbon aerogels

- Bulk LiBH₄ undergoes a phase transition at 390 K
- Under conditions of confinement, we observe indications of a phase transition at 360 K
- Low-temperature dynamics due to hydrogen reorientation appear on the nanosecond timescale at 200 K in the bulk and fully-loaded aerogel
- This temperature is decreased by 75 K in the partially-loaded carbon aerogel

T dependence of BH_4^- rotational jump frequency for nanoconfined LiBH₄ (4% loading in carbon aerogel)

Synthesis of Novel Compounds

Technical Accomplishment Collaboration with Maryland and GM

Motivation: to synthesize new compounds potentially promising for hydrogen storage

The structures of two new synthesized, mixed-anion complex hydrides were solved by XRD.

* The determination of the details of H_2 release is in progress.

NIS

Cycling of MgH_2 Thin Films

Collaboration with Stanford

Motivation: to probe the mechanisms of thin-film metal hydride cycling

* NR data suggest porous Mg formation upon dehydrogenation of thin-film MgH_2

Technical Accomplishment Collaboration with MHCoE theory group

Motivation: to develop thermodynamic database (using Calphad) for H-Li-Mg-Ca-B-Si, where experimental data are generally lacking

We continued thermodynamic descriptions of the constituent subsystems

- Expanded database to include higher borane species in the gas-phase description.
- Expanded the modified Neumann-Kopp rule for the prediction of heat capacities for the hydro-*closo*-borates.
- Developed thermodynamic descriptions for Mg-B-H and Ca-B-H systems.

*Results from Calphad computations give details of the reaction process, such as actual available H amount and species concentration in the gas phase.

Collaborations

Partners (Type of Institution): What we provide to them

- **CalTech** (Univ./MHCoE): neutron and x-ray measurements and DFT calculations of various alanates, borohydrides, and related materials
- Georgia Tech (Univ./MHCoE): Calphad calculations of multicomponent light-element systems

GM (Industry): cycling and kinetics studies and characterization of complex hydrides

HRL (Industry/MHCoE): neutron measurements of aerogels and nanoconfined LiBH₄; cycling and kinetics studies and characterization of nanoconfined storage materials

Illinois (Univ./MHCoE): Calphad calculations of multicomponent light-element systems

JPL (Fed./MHCoE): neutron and x-ray measurements and DFT calculations of various alanates, borohydrides, and related materials

Lawrence-Livermore (Fed./MHCoE): neutron measurements of aerogels and nanoconfined storage materials

Maryland (Univ.): neutron and x-ray measurements of alanates, borohydrides, and related materials; neutron imaging of hydrogen-storage beds

Michigan (Univ.): neutron measurements of BH_4^- dynamics in neat and nanoconfined metal borohydrides **Missouri-Columbia** (Univ.): neutron and x-ray measurements of $Li_2B_{12}H_{12}$ compounds

Missouri-St. Louis (Univ./MHCoE): Calphad calculations of multicomponent light-element systems; neutron measurements of various alanates, borohydrides, and related materials

Ohio State (Univ./MHCoE): neutron and x-ray measurements of MgB₁₂H₁₂ compounds

Penn (Univ.): neutron measurements of boranes, perovskite hydrides, and other storage-related materials

Pittsburgh (Univ./MHCoE): Calphad calculations of multicomponent light-element systems

Sandia (Fed./MHCoE): neutron measurements and DFT calculations of various alanates, borohydrides, and related materials; Calphad calculations of multicomponent light-element systems

Stanford (Univ./MHCoE): neutron reflectivity measurements of H profiles in H-cycled Mg thin films 17

Future Work

Remainder of FY2010:

- Continue structural and spectroscopic characterizations of dodecahydro-*closo*dodecaborates (M_xB₁₂H₁₂). (with Sandia, Caltech, Maryland, Missouri-St. Louis, Ohio State)
- Continue rotational dynamics investigations of nanoscaffolded borohydrides. (with HRL, Lawrence Livermore, Michigan, Caltech)
- Continue Mg thin-film characterizations using neutron reflectometry. (with Stanford)
- Perform neutron scattering characterizations of new materials in conjunction with the needs of the other partners, including borohydrides and nanoscaffolded materials of interest.
- Continue to expand Calphad database (evaluate literature for data, identify data needs and systems with MHCoE partners for future database development).

Summary

Neutron methods and Calphad computations continue to provide crucial, non-destructive characterization and predictive tools for the MHCoE.

• The structures of SrB₁₂H₁₂ and BaB₁₂H₁₂, heavier alkaline-earth analogs to MgB₁₂H₁₂, were solved by a combination of XRD, neutron vibrational spectroscopy (NVS), and DFT calculations.

• NVS measurements of amorphous, anhydrous $MgB_{12}H_{12}$ yield a vibrational density of states suggestive of the predicted stable crystalline structure.

• Quasielastic neutron scattering measurements of NaBH₄, KBH₄, and $Cs_2B_{12}H_{12}$ allowed us to characterize, in detail, the rotational dynamics of the corresponding BH₄⁻ and B₁₂H₁₂²⁻ anions.

• NVS measurements of the direct high-pressure hydrogenation of $Li_2B_{12}H_{12} + LiH$ and $Na_2B_{12}H_{12} + NaH$ mixtures indicate the near complete formation of $LiBH_4$ and $NaBH_4$, respectively.

• Small-angle neutron scattering measurements of partially LiBH₄-loaded carbon aerogels are consistent with the preferential filling of smaller pores and/or surface film formation.

• The structures of two new synthesized, mixed-anion complex hydrides, $Li_2(BH_4)_2NH_3BH_3$ and $Ca(BH_4)_2(NH_3BH_3)_2$, where solved by XRD. The determination of the details of H_2 release is in progress.

• Neutron reflectometry of dehydrogenated of MgH₂ thin films suggests the formation of porous Mg.

• Calphad thermodynamic descriptions were expanded to include higher borane gas-phase species and hydro-*closo*-borates.