Amide and Combined Amide/Borohydride Investigations

Donald Anton, Charles James, Christine Erdy, Long Dinh, and Rob Lascola

Savannah River National Laboratory

June 9, 2010

Project ID #: ST070

This presentation does not contain proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: 10/1/05
- End: 9/30/10
- Percent complete: 83%

Budget

- Funding for FY09
 - \$400K
- Funding for FY10
 - \$350K

Barriers Addressed

- A. System Weight and Volume
- E. Charging/Discharging Rate
- **P. Understanding Chemisorption**

Partners

- Z. Fang U. of Utah
- H. zurLoye U. of South Carolina D. Bugaris – U. of South Carolina
- E. Ronnebro PNNL T. Autrey – PNNL
- Hydrogen Storage Engineering CoE
- D. Chandra U. of Nevada-Reno

(H) HSECOE

Task I - LiMgN

- Perform isothermal/isobaric hydrogenation and dehydrogenation experiments to analyze the effect of **composition** on the **kinetics** of the LiMgN system.
- Formulate an outline of discharge and charge conditions to **prepare** a **hydrogen storage system** based on the kinetics.
- Prepare a **database** for use by the Hydrogen Storage Engineering Center of Excellence (**HSECoE**) to assess the utility of LiMgN in a **prototype system**.

Task II - $M_1M_2(BH_4)_x(NH_2)_y$

- Perform an empirical study of high hydrogen content bimetallic mixed borohydride/amide systems of the form: M₁M₂(BH₄)_x(NH₂)_y. These systems include Mg(BH₄)₂/LiNH₂, Mg(NH₂)₂/LiBH₄, and Ca(NH₂)₂/LiBH₄.
- Investigate the addition of NH_3BH_3 to $Ca(BH_4)_2$ and $LiNH_2$ as a potential high hydrogen containing mixture.

Relevance –

LiMgN as a Hydrogen Storage Material

$LiNH_2 + MgH_2 \rightarrow LiMgN + 2H_2$ $\Delta H_{rxn} = 32 kJ/molH_2$

- Identified using DFT calculations as potentially reversible with a theoretical H₂ gravimetric storage capacity of 8.2 wt% (Alapati *et al.*, *Phys. Chem. Chem. Physics.* 9 (2007) 1438)
 - Experimentally 8.1 wt% was observed by Lu et al. under moderate temperature (160°C to 220°C) using TGA after jar rolling for 12 to 24 hours (Lu et al., J. Phys. Chem. C 111 (2007) 12129)
- The reversible hydrogen absorption reaction involved

 $LiMgN + 2H_2 \leftrightarrow \frac{1}{2} Mg(NH_2)_2 + \frac{1}{2} MgH_2 + LiH$

- 8 wt% observed experimentally at 160°C and 140 bar in pressure vessel
- Dehydrogenation is proposed to proceed through an intermediate step

 $\frac{1}{2}$ Mg(NH₂)₂ + $\frac{1}{2}$ MgH₂ + LiH \rightarrow Li_{2x}Mg_{1-x}(NH)₂ + MgH₂ + H₂ \rightarrow LiMgN + H₂

- Accelerated reversibility has been observed using 4 wt% TiCl₃ dopant (Lu *et al.*, *J. Phys. Chem. C* 111 (**2007**) 12129)
- Planetary milling for 36 hours resulted in 6.1 wt% lost by 390°C, the formation of $Li_2MgN_2H_2$, a $\Delta H_{rxn} = 45.9 \text{ kJ/molH}_2$ and a reversible capacity of 2.5 wt% at 210°C/101 bar pressure (Liu *et al.*, *Chem. Mater.* 20 (2008) 3521)

Approach – Li-Mg-N-H Quaternary Phase Diagram

Approach – LiMgN Experimental Plan

- Perform isothermal and isobaric kinetic studies under controlled reaction conditions
 - Explore effect of catalysts composition Li:Mg:M_{tr}
 - $M_{tr} = TiCl_3$, VCl_3 , TiN, $NiCl_2$ and $ScCl_3$ with composition = 1.5 mol%
- XRD analysis performed on as-milled material and after hydrogenation/dehydrogenation cycles
- TGA-RGA to determine gas composition during dehydrogenation
- *Deliverable*: Experimental data necessary to determine isothermal kinetics, characterize the proposed reaction for hydrogenation and dehydrogenation and database for use by HSECoE to assess the utility of LiMgN in a prototype system

Approach –

Material Synthesis and Experimental Procedure

• Synthesis

- Starting materials include $LiNH_2$ or LiH, MgH_2 and/or $Mg(NH_2)_2$ and catalysts
- All materials prepared using Fritsch mill rotational or jar roll milling techniques
- FM for 2.5 hours at 500 rpm with rotational direction reversed every 30 minutes
- Standard discharge condition: 260°C/1 bar/ 6 hrs
- Standard charge condition: 180°C/ 100 bar/ 6 hrs

Discharge Procedure

- Reactor placed under high pressure (~ 110 bar) and heated to desired temperature
- Manifold controlled so that when the reactor is released to the reservoir, the nominal backpressure is equal to 1 bar

Charge Procedure

- Reactor placed under active vacuum and heated to desired temperature
- Reservoir is pressurized to desired pressure and released to the reactor

TGA-RGA Procedure

- Heating rate at 5°C/min from RT to 315°C
- Looked at mass 2 (H₂), 16 (NH₂⁻), 17 (NH₃/OH) and 18 (H₂O) in RGA

XRD Analysis of As-milled 1:1 LiNH₂:MgH₂ w/w/o catalyst

MgH₂ and LiNH₂ patterns identified; however, LiCl also identified for halide catalysts

- No indication of decomposition of TiN resulting from milling
- Metathesis reaction going on which produces LiCl in samples (ball-milling may provide enough energy to initiate the reaction) [observed by: Parkin *et al.*, *J. Mater. Chem.* **5**, (**1995**) 909.]

Technical Accomplishments and Progress – RGA results of As-milled 1:1 LiNH₂:MgH₂ ^w/_{w/o} catalyst

- All catalysts reduce 1st cycle hydrogen desorption temperature by 25 35°C
- Metathesis reaction between $LiNH_2$ and $M_{tr}Cl_3$ promotes ammonia release
- Only TiN increased the temperature of initial ammonia release by 15°C

- Rates of hydrogen charge are an order of magnitude lower than the DoE technical target
- TiN continues to significantly increase absorption capacity through four cycles while the halide catalysts continue to decrease
 - Metathesis reaction between LiNH₂ and M_{tr}Cl₃ hinders hydrogen absorption through the loss of essential nitrogen

Technical Accomplishments and Progress – Average Rate of Hydrogen Discharge [gH₂/s]

Average Rate of Hydrogen Discharge for a packed bed storing 5kg H₂

- Hydrogen discharge rate for TiN continues to increase through four cycles due to:
 - The cycled material not being completely homogenized after four cycles resulting in the loss of available surface area for the reaction to occur
- The hydrogen discharge rate decreased drastically for the halide catalysts after the first cycled due to

• Metathesis reaction between $LiNH_2$ and $M_{tr}Cl_3$: $LiNH_2 + TiCl_3 \rightarrow LiCl + Ti(unknown state) + NH_2$

Technical Accomplishments and Progress – XRD Analysis of four cycled 1:1 LiNH₂:MgH₂ ^w/_{w/o} catalyst

- $Mg(NH_2)_2$, MgH_2 and LiH identified showing $LiMgN \leftrightarrow LiH + \frac{1}{2}MgH_2 + \frac{1}{2}Mg(NH_2)_2$
- Mg_3N_2 also identified, possibly forming from $Mg(NH_2)_2 + 2MgH_2 \rightarrow Mg_3N_2 + 4H_2$ [$\Delta H = 15 \text{ kJ/mol } H_2 \text{ at 500K}$, Akbarzadeh, *et al., Adv Mat.* 19 (2007) 3233] or LiMgN + H₂ \rightarrow LiH + Mg₃N₂

Raman Spectroscopy Analysis

- As-milled: High-shift region shows spectrum consistent with LiNH₂ amide stretches
- Discharged: Doublet at 379 (strong) and 341 (weak) cm⁻¹ which closely resembles that of Mg₃N₂; LiMgN reported in literature [Kuriyama, *et al.*, *Phys Rev B* 75 (2005) 233204] not observed due to different crystal structure
 - Kuriyama observed a cubic disordered antifluorite structure (Fm3m),
 - Instead a nitrogen-vacancy model for antibixbyite-structure (I2₁3) was observed similar to that observed by Yamane, *et al., J of Alloys and Comp* 319 (2009) 124

META

• Recharged: The bands at 3274 and 3330 cm⁻¹ are consistent with the formation of Mg(NH₂)₂

Conclusions for Task I - LiMgN

- Catalyst composition has a significant effect on H_2 and NH_3 discharge temperatures, cyclic capacity and sorption rates
 - Uncatalyzed
 - Showed a decrease in hydrogen discharge rate over four desorption cycles
 - Rate of conversion from $LiNH_2 + MgH_2 \rightarrow LiMgN > LiH + \frac{1}{2}MgH_2 + \frac{1}{2}Mg(NH_2)_2 \rightarrow LiMgN$

•TiN

- Only catalyst to increases temperature of ammonia release
- Showed a significant increase in hydrogen capacity and rate over four absorption cycles
- Showed an increase in hydrogen discharge rate over four desorption cycles
 - Indicates cycled material not being completely homogenized after four cycles resulting in the loss of available surface area for the reaction to occur

• Other catalyst

- Reduced the temperature of ammonia release
- Showed decrease in sorption rates and absorption capacities over four cycles due to metathesis reaction between $LiNH_2$ and $M_{tr}Cl_3$
- Sorption rates are an order of magnitude less than the 2010 DOE goals.

Relevance –

Introduction of Mixed Borohydride/Amide Systems

- New set of binary anion complex compounds M(BH₄)_x(NH₂)_y exists with high wt% H₂
- Relatively unexplored area with good potential for low temperature high capacity media
- The addition of mixed metal cations to the borohydride/amide compounds may decrease the strength of the B-H and N-H bonds as compared to their parent M(BH₄) chemical compounds leading to the possibility of
 - amorphous compounds with significantly reduced entropy associated with dehydrogenation reaction
 - provide lower heats of reaction for hydrogenation

Relevance –

Competing Systems of Mixed Amide/Borohydride

Di-Anionic Complexes: M(BH₄)⁻(NH₂)⁻

- Synthesis of $Li_4(BH_4)(NH_2)_3$ and desorption >10wt% H₂ at 250-350 °C, *Pinkerton et al.*, 2006
- Synthesis of new $Li_4(BH_4)(NH_2)_3$ [$Li_4BN_3H_{10}$], by mechanco-chemical milling of $LiNH_2$ and $LiBH_4$, *Chater et al.*, 2006
- Theoretical calculations revealed that $Li_4BN_3H_{10} \rightarrow Li_3BN_2 + LiNH_2 + H_2$ is only weakly endothermic, with a $\Delta H \sim 13$ kJ/mol H₂, *Siegel et al.*, 2007
- Evidence of B-H and N-H bond destabilization as compared to the parent $LiBH_4$ and $LiNH_2$ structures, *Yang et al.*, 2007
- Impact of Stoichiometry on Hydrogen Storage Properties of LiNH₂ + LiBH₄ + MgH₂ Composites, Sudik et al., 2009 (Optimal Ratio 3:1:1.5 for H₂ Desorption and Reversible at Ratio 2:1:1 and 2:0.5:1)

Ammoniated Borohydride Complexes: M(BH₄)··NH₃

• Ammonia complex of magnesium borohydride, Soloveichik et al., 2008

Amidoborane Complexes: M(NH₂)-BH₃

• Calcium amidotrihydroborate as hydrogen storage material, Burrell et al., 2007

Approach –

Experimental Plan

<u>Amide/Borohydride Plane of</u> <u>Quaternary Phase Diagram</u>

- Mixtures are formed using planetary ball-milling techniques.
- Identify isothermal/isobaric sorption properties of mixed phases using Sievert's apparatus.
- XRD analysis after ball milling process and after hydrogenation and dehydrogenation.
- TGA-RGA to determine composition of hydrogen during dehydrogenation.

Synthesis of Mg(NH₂)₂

- XRD confirmed ~ 95% pure $Mg(NH_2)_2$ by simple addition of ammonia to magnesium powder and heat in a high pressure reactor vessel.
- Theoretical H_2 capacity is ~ 7.1 wt%
- TGA shows a total weight loss of more than 30%.
- RGA shows a disproportionate amount of NH_3 , NH_2^- to H_2 .

Synthesis of Ca(NH₂)₂

- XRD confirmed ~ 99% pure Ca(NH₂)₂ by simple addition of ammonia to calcium granules in a high pressure reactor vessel.
- Theoretical H_2 capacity is ~ 5.5 wt%
- Total weight loss from TGA is near 23%.
- RGA shows an immediate release of NH₂-near RT followed by a release of hydrogen at around 130°C, and an ammonia release at 230°C.

ENCE

Technical Accomplishments and Progress – Ca(BH₄)₂+LiNH₂

- 4 LiNH₂ : 1 Ca(BH₄)₂ ratio is most effective for dehydrogenation.
- Mixtures of Ca(BH₄)₂ and LiNH₂ leads to predominately H₂ release at 150-300°C vs NH₃.
- Li₄(BH₄)(NH₂)₃ is the major phase for the 4LiNH₂:1Ca(BH₄)₂ mixture.

Technical Accomplishments and Progress – Mg(BH₄)₂+LiNH₂: Isothermal Sievert's Measurements

- H₂ absorption fluctuations occur due to competing desorption/absorption processes in the heterogeneous material.
- Absorption of the $3Mg(BH_4)_2 + LiNH_2$ has the maximum absorption of 7.5 wt%.
- Desorption of the 3Mg(BH₄)₂ + LiNH₂ is incomplete at 2 wt% due to initial time constraints on the experiment for the mixture to reach steady state.
- Large H₂ absorption indicates a reversible system.

Technical Accomplishments and Progress – Mg(BH₄)₂+LiNH₂: RGA

- The Mg(BH₄)₂ and LiNH₂ mixtures produce multiple H₂ releases over the temperature range shown. Initial hydrogen release (~200°C) is at lower temperature compared to LiNH₂ (230°C).
- Multiple H_2 releases are broad which indicates more H_2 and less NH_3 (shown on the right).
- The mixtures showed a significant reduction in ammonia release compared to LiNH₂. Diborane release is negligible.

Technical Accomplishments and Progress – Raman Spectroscopy: Ca(BH₄)₂+LiNH₂+NH₃BH₃

 $Ca(BH_4)_2 + LiNH_2 + NH_3BH_3$

BM, 200 rpm

3 hr

1

- spectra of the 3 starting materials look pretty much like the literature/reference spectra
- spectra of the ball-milled starting materials suggests a new material is formed:
 - BH stretch region looks a lot more like a borohydride than a borane
 - in the 1240-1350 cm⁻¹ region, there is an extra peak in the BM mixture compared to $Ca(BH_4)_2$ (the peak does not appear in the spectra of the other starting materials)
- extra peaks suggest possibility of a mixed species, or a mixture of species and broadening of peaks could also be an indication of a mixture of new species

Conclusions for Task II - M₁M₂(BH₄)_x(NH₂)_y

- Ca(NH₂)₂ and Mg(NH₂)₂ have been successfully synthesized with > 95% purity.
- Mixtures of $Mg(BH_4)_2$ and $LiNH_2$ have shown good absorption capabilities but is limited kinetically on desorption through 2 cycles.
- Mixtures of Mg(BH₄)₂ and LiNH₂ contain multiple H₂ releases, with reduced release of NH_3 .
- Initial work has begun in understanding the effect of adding NH_3BH_3 to $Ca(BH_4)_2$ and $LiNH_2$ as a potential high H_2 containing mixture. Raman has confirmed that a new mixture is formed.
- Initial results show desorption of H₂ as low as 150^oC for the mixture of Ca(BH₄)₂:LiNH₂:NH₃BH₃.

Future Directions

- Task I
 - Carry cycling out further than 4 complete cycles (e.g. 10 15 cycles for each material)
 - Continue testing other catalysts to render faster kinetics and lower temperatures of operation (e.g. nano-Ti, LiBH₄, KH,....)
 - Analyze the purity of the discharged H_2 as a function of temperature using FTIR
- Task II
 - Complete a study of $Ca(NH_2)_2$ and $Mg(NH_2)_2$ ball-milled with LiBH₄ in various ratios.
 - Continue additions of ammonia borane, decaborane and ammonia to binary compositions to evaluate possible high hydrogen compounds.
 - Further investigate the sorption characteristics of the ball-milled mixtures using each mixture using Sievert's experiments.

