

Synthesis of Nanophase Materials for Thermodynamically Tuned Reversible Hydrogen Storage

Son-jong Hwang, Jason Zan, Joe Reiter and Channing Ahn Caltech June 7th, 2010

Project ID # ST072

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: October 1, 2004
- Project end date: December 31, 2010
 Percent complete: 90%

Budget

- Total project funding DOE share \$1M (5 yrs) Contractor share \$250k (5 yrs)
- Funding for FY07 DOE share \$200k Contractor share \$50k
- Funding for FY08 DOE share \$200k Contractor share \$50k

Barriers

- (B) Weight and volume of on board hydrogen storage systems
- (M) Reversibility of high capacity solid state storage materials
- (N) Kinetics (fueling/refueling times) associated with current solid state storage materials

Partners

Interactions/ collaborations:

John Vajo, HRL Laboratories Vitalie Stavila, Sandia Natl. Lab. Karl Johnson, Univ. Pittsburgh David Sholl, Georgia Inst. Tech. J.C. Zhao, GE/Ohio State Univ. Terry Udovic, NIST Joseph Reiter, JPL Craig Jensen, U. Hawaii

Relevance

- To assess whether thermodynamically tractable reactions based on hydride destabilization, that should be reversible but appear not to be, are kinetically limited.
- To enable short hydrogenation times associated with refueling, that will require short solid-state and gas-solid diffusion path lengths.
- To address the problems associated with large, light-metal-hydride enthalpies (hydrogen fueling/refueling temperatures) and develop strategies to address thermodynamic issues surrounding the use of these materials through hydride destabilization. Systems of interest determined through "computational screening" by MHCoE partner members.
- To understand issues related to grain growth and surface/interface energies, which are vital in order to understand the kinetics of hydrogenation/dehydrogenation reactions.

Approach

- Ball milling of destabilization candidates and gravimetric dehydrogenation and hydrogenation evaluation of thermodynamically appropriate systems, using Sieverts apparatus systems at Caltech and at JPL.
- Analysis of borohydride reaction pathway intermediates, like closoboranes to seen if these structures can be destabilized.
- DFT calculations of specific hydride destabilization formation enthalpies and reaction enthalpies.
- X-ray diffraction for determining reaction product phases.
- NMR analysis (at the Caltech Solid State NMR facility) to determine bonding and phase formation in systems that lack long range crystallographic order.
- Transmission electron microscopy (at the Caltech Kavli Nanoscience Institute and the Material Science TEM facilities) and energy filtered imaging to determine microstructural evolution and phase inhomogeneities in scaffold based systems.

Technical accomplishments: Investigation of 2LiBH₄-MgH₂ under H₂ back pressure via NMR

Background:

- Inconsistencies in determining closo-dodecaborane ($MB_{12}H_{12}$) formation. $B_{12}H_{12}$ appeared to be ubiquitous in metal borohydride reactions^{1,2} and scaffold experiments of LiBH₄³.
- But original destabilization system, 2LiBH_4 -MgH₂, showed reversibility (no NMR of B₁₂H₁₂) while it has been assumed that B₁₂H₁₂ intermediates are stable.
- Several studies⁴⁻⁵ showed the importance of H_2 back pressure to avoid direct decomposition of LiBH₄, the case where the hydrogen capacity drops as the discharge/charge cycle goes due to the interference from the stable $MB_{12}H_{12}$.
- Uncertainty as to whether $B_{12}H_{12}$ suppressed in presence of high (4 bar) backpressure or whether $B_{12}H_{12}$ phase destabilized during cycling.
- Our recent work indicated that closo-borane extremely stable, so

• Case revisited to assess phase formation at high and moderate (1.5 bar) backpressure to probe limits of that show that modest back-pressure inadequate to suppress $B_{12}H_{12}$ formation.

¹"Experimental studies on intermediate compound of LiBH₄," S. Orimoa and Y. Nakamori, N. Ohba, K. Miwa, M. Aoki, and S. Towata, A. <u>Züttel</u>, Appl. Phys. Lett. 89, 021920(2006).

²"NMR Confirmation for Formation of [B₁₂H₁₂]²⁻ Complexes during Hydrogen Desorption from Metal Borohydrides," S.-J. Hwang, R. C. Bowman, Jr. J. W. Reiter, J. Rijssenbeek, G. L. Soloveichik, J.-C. Zhao, H. Kabbour and C. C. Ahn, J. Phys. Chem. C Lett. 112, 3164-3169 (2008).

³"Enhanced Hydrogen Storage Kinetics of LiBH₄ in Nanoporous Carbon Scaffolds, A. F. Gross, J. J. Vajo," S. L. Van Atta, and G. L. Olson, J. Phys. Chem. C (2008), *112, 5651-5657*

⁴"Reversible Storage of Hydrogen in Destabilized LiBH₄ "J. J. Vajo, S. Skeith and F. Mertens, J. Phys. Chem. B, Vol. 109, No. 9 (2005). ⁵Pinkerton, et al. JPC *C*, 2007, 111, 12881.

Technical accomplishments: Can B₁₂H₁₂ be destabilized?

Reaction 6 from V. Ozolins, E. H. Majzoub and C. Wolverton, JACS (2008) shown in table below suggests destabilization route: (6*) $Li_2B_{12}H_{12} + 6MgH_2 \rightarrow 6MgB_2 + 2LiH + 11H_2$ but NMR indicates that <u>**no**</u> MgB₂ formed and that all dehydrogenation from initial MgH₂

Table 2. Predicted Decomposition Reactions for Borohydride
--

	reaction	wt % (kg H ₂ /kg)	vol density (g H₂/l)	∆ <i>Н</i> ⁰к	$\Delta H^{\rm 300~K}$	ΔS ^{300 к}	T _c (°C)
	Destabilized React	ions with $X_n B_{12} H_{12}$	2 Compounds				
(4)	$\mathrm{Li}_{2}\mathrm{B}_{12}\mathrm{H}_{12} + 2\mathrm{CaH}_{2} \rightarrow 2\mathrm{CaB}_{6} + 2\mathrm{LiH} + 7\mathrm{H}_{2}$	5.9	67	43.1	51.1	128.2	123
(5)	$\mathrm{Li}_{2}\mathrm{B}_{12}\mathrm{H}_{12} + 6\mathrm{Mg} \rightarrow 6\mathrm{Mg}\mathrm{B}_{2} + 2\mathrm{Li}\mathrm{H} + 5\mathrm{H}_{2}$	3.3	40	53.4	60.2	112.0	259
(6*)	$\mathrm{Li}_{2}\mathrm{B}_{12}\mathrm{H}_{12} + 6\mathrm{MgH}_{2} \rightarrow 6\mathrm{MgB}_{2} + 2\mathrm{LiH} + 11\mathrm{H}_{2}$	7.1	53	52.4	60.1	123.3	215
(7)	$MgB_{12}H_{12} + 5MgH_2 \rightarrow 6MgB_2 + 11H_2$	7.5	86	42.1	50.0	123.9	128
(8)	$CaB_{12}H_{12} + CaH_2 \rightarrow 2CaB_6 + 7H_2$	6.3	85	38.6	47.0	130.7	86
(9)	$CaB_{12}H_{12} + 3MgH_2 \rightarrow 3MgB_2 + CaB_6 + 9H_2$	7.0	91	45.2	53.2	126.7	144

Given the apparent ubiquity of $B_{12}H_{12}$ formation as shown below for example in the work that describes the improved kinetics of LiBH₄ in a carbon scaffold as shown from our analysis below, some effort was expended in probing for evidence that this phase might be destabilized.

Characteristic -12 ppm peak from $Li_2B_{12}H_{12}$ shown from scaffold dehydrogenated $LiBH_4$ from "Enhanced Hydrogen Storage Kinetics of $LiBH_4$ in Nanoporous Carbon Scaffolds, A. F. Gross, J. J. Vajo," S. L. Van Atta, and G. L. Olson, J. Phys. Chem. C (2008), *112, 5651-5657* An assessment of other reactions suggested in the paper by Ozolins, et al were run in order to probe for destabilization reactions, were not successful in destabilizing the $B_{12}H_{12}$ phase.

Reaction 4 in that paper:

 $Li_2B_{12}H_{12} + 2CaH_2 \rightarrow 2CaB_6 + 2LiH + 7H_2$ was run in both directions at 400°C, no hydrogen was released.

Reaction 8, $CaB_{12}H_{12} + CaH_2 \rightarrow 2CaB_6 + 7H_2$ was run from right to left at >90 bar pressure with no hydrogen uptake that could be measured. We note however that V. Stavila of Sandia National Lab. was able to run this reaction but temperatures of >450°C were required.

In addition, reaction 14 from that paper:

 $Ca(BH_4)_2 \rightarrow CaB_{12}H_{12} + 5CaH_2 + 13H_2$ was run from right to left with no hydrogen uptake that could be measured.

Reaction 15, $3Ca(BH_4)_2 \rightarrow CaB_6 + 2CaH_2 + 10H_2$ was run in both directions and partial reversibility was seen when the reaction is run from left to right (60%) but no reaction was seen in going from right to left.

Technical accomplishments: Investigation of initial $2LiBH_4$ -MgH₂ reaction under H₂ back pressure via NMR

6 samples analyzed via NMR for this work:

1.LCS-109: The as-prepared $2\text{LiH} + \text{MgB}_2$ mixture after milling for 1 hr. 2.LCS-109ua: Half of the as-prepared sample LCS-109 after the first hydrogenation. 3.LCS-109ub: The same sample after dehydrogenation into **4 bar** H₂.

 LCS-109uc: The rehydrogenation of LCS-109ub after it had been dehydrogenated in 4 bar H₂.
LCS-109ud: The other half of sample LCS-109ua after dehydrogenation into vacuum.
LCS-109ue. After rehydrogenation of LCS-109ud.

Figure at right shows temperature ramp (dotted trace) and uptake plots for samples into 4 bar hydrogen backpressure or into vacuum.

Technical accomplishments: Investigation of 2LiBH₄-MgH₂ under H₂ back pressure via NMR (cont'd)

9

ppm

Technical accomplishments: NMR Investigation of dodecaborates $(MB_{12}H_{12}, M=Li, Mg, Ca)$

To better assess the physicochemical property of metal dodecaborates (MB₁₂H₁₂, M=Li, K, Ca, Mg, etc), during desorption of metal borohydrides, the dynamics was probed by static variable-temperature NMR spectroscopy.

¹¹B Static NMR

¹Her, J.-H. et al. *Inorg. Chem.* **2008, 47, 9757.** ²Tiritiris, I. et al. *Appl. Magn. Reson.* **2007, 32, 459.**

Crystal structure of $Li_2B_{12}H_{12}$ ¹

• ¹¹B (I=3/2, quadrupole) static lineshape a sensitive measure of molecular jumping motion.²

• Disappearance of powder pattern of satellite transition (peaks ±1100 ppm) and narrowing of central transition (~ 0 ppm) seen as T increases.

• Depending on cation size and crystal structure, dynamic activation energy varies widely (note difference between Li and K seen for first time).

Technical accomplishments: Destabilization of dodecaborates (MB₁₂H₁₂, M=Li, Na, K)

• In collaboration with Sandia National Laboratory (V. Stavila) conversion of $MB_{12}H_{12}$ to $M(BH_4)_n$ via high pressure evaluated. As noted earlier, our previous attempts at lower pressure (H₂ pressure up to 90 bar) of $MB_{12}H_{12} + MH_n$ reactions unsuccessful despite estimated low thermodynamic barrier¹

$Li_2B_{12}H_{12} + 10 LiH \longrightarrow$	12LiBH ₄	∆H ^{300K} =-44.4 kJ/mol*
Na ₂ B ₁₂ H ₁₂ + 10 NaH +13H ₂ ►	12NaBH ₄	∆H ^{300K} - ?
$MgB_{12}H_{12} + 5 MgH_2 \xrightarrow{+13H_2}$	6Mg(BH ₄) ₂	∆H ^{300K} =-29.3 kJ/mol*
CaB ₁₂ H ₁₂ + 5 CaH ₂ →	6Ca(BH ₄) ₂	∆H ^{300K} =-39.2 kJ/mol*

Formation of M(BH₄) quantified by NMR

Reaction	Conditions	$M_2 B_{12} H_{12}$	MBH_4
$Na_2B_{12}H_{12} +$	500 °C,	9.3	89.6
10NaH	793 bar H_2 ,		
	72 h		
$Li_2B_{12}H_{12} +$	500 °C,	9.1	89.6
10LiH	931 bar H_2 ,		
	72 h		
$K_2B_{12}H_{12} +$	500 °C,	7.8	92.2
10KH	931 bar H ₂ ,		
	72 h		11

• SNL performed reactions using high H₂ (930 bar) pressure at T> 550°C after high-energy ball milling over 1 hour. ¹¹B MAS NMR analysis shows formation of $M(BH_4)_n$ in significant fraction (see Table for the ratio between the reactant and product). Destabilization of the closo-borane phase possible but conditions required for this are extreme.

¹V. Ozolins, E. H. Majzoub and C. Wolverton, JACS (2008)

Summary

• Previously believed that $B_{12}H_{12}$ formation a universal problem in destabilization reactions with borohydrides that would lead to irreversible hydrogenation/dehydrogenation reactions.

• Destabilization reactions of the closo-boranes suggested by theory not achievable under normal experimental conditions.

• Conditions of high pressure and temperature (performed at Sandia National Laboratory) show that borohydride phase can be reformed.

 Closo-borane formation can be minimized by dehydrogenation into modest (4 bar) back pressure whereas dehydrogenation into vacuum or 1.5 bar pressure results in dodeca-borane formation.