2010 DOE Hydrogen Program Review Hydrogen Storage by Spillover

Hao Chen, Anthony J. Lachawiec, Jr., Nick Stuckert, Lifeng Wang and Ralph T. Yang (PI)

> University of Michigan June 9, 2010

Project ID: ST078

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Barriers

- Project start date: 2/1/05
- Project end date: 6/30/10
- Percent complete: 100%

Budget

- Total project funding: \$1,644,401
 - DOE share: \$1,275,355
 - Contractor share: \$369,046
- Funding received in FY09: \$435,855
- Funding for FY10: \$0

- General
 - Weight & Volume
 - Rates (Refueling and discharge)
- Reversible Solid-State Material
 - Hydrogen Capacity & Reversibility
 - Lack of Understanding of H₂
 Spillover

Partners

- Sample/adsorbed H
 Verification, Characterization & Mechanism
 NREL, Rice U, APCI, NIST, UNC, SwRI[®]
- Plan industrial collaboration after sorbent optimization

Project Objectives

- To develop hydrogen storage sorbent materials with system capacities in excess of 6 wt% (and 45 g/L) at *ambient temperature* by using the spillover mechanism
- To develop spillover sorbents with high rates at ambient temperature for both charge and discharge

Technical Approach

- Modify carbons by plasma treatment to enhance spillover storage by adding surface functional groups (such as oxygen groups)
- Search for and develop "catalysts" for spillover to increase rates
- Develop metal-doped non-carbon sorbents (i.e., zeolites) for spillover storage to achieve DOE volumetric target (28g/L for 2010, at 298K)
- Use our bridge-building technique to significantly enhance spillover and storage at ambient temperature for MOFs (US & Foreign Patent applications filed, Yang et al., US20070082816A1 & WO2007046881A2, 2006)
- Synthesis of nanostructured carbons with ultra-high surface areas and develop effective direct metal-doping techniques for spillover-storage at ambient temperature

Technical Progress: Understanding Kinetics of Spillover Adsorption and Desorption of H_2 on Pt/Carbon in Steps at 298K (Results on bridged IRMOF-8 are similar)

Desorption rates are always faster than adsorption rates !

Technical Progress: Kinetics of Spillover Recombination of H Atoms and Direct Desorption Rates

Desorption Rate – Adsorption Rate = Recombination Rate

Reason: Recombination of H atoms on carbon leads to direct desorption, which is included in desorption but not in adsorption rate measurement.

Lachawiec and Yang, J. Phys. Chem. C. 113, 13933 (2009)

Technical Progress

Increased Spillover Storage (at 298K) on Carbon (i.e., Templated Carbon, TC) by O₂ Plasma

- Pretreatment of carbon by O₂ plasma before metal-doping increased surface oxygen groups, particularly semiguinone and lactone groups.
- The plasma pretreatment significantly increased the spillover storage to 1.75wt% at 100 bar.
- Heat of adsorption for Pt/TC-plasma was higher than that on Pt/TC (13 vs. 9.6 kJ/mol).

Lactone

Technical Progress

- No further reaction occurred after 3 adsorption/desorption cycles.
- O₂ plasma treatment increased the reversible amount from 1.2wt% to 1.32wt%.
- XPS analysis showed that lactone groups reacted with the spiltover H.
- Molecular orbital calculations showed that among the oxygen groups, the strongest binding energy with H was with the lactone group.

(Wang and Yang, J. Phys. Chem. C, 114, 1601 (2010))

Technical Progress

Toward DOE Volumetric Target: Spillover on Zeolites at 298K

 The densities of zeolites are substantially higher (2-3 times higher) than that of carbons and MOFs, and have high densities of cations for interactions with hydrogen. Hence they are most promising for meeting DOE volumetric targets.

• Among zeolites, Ca-LSX and Li-LSX zeolites show the highest H_2 capacities (up to date) at 298K.

Technical Progress Toward DOE Volumetric Target: Spillover on Zeolites at 298K

- The best spillover sample was Pt-doped by CVD using (Trimethyl) methylcyclopentadienyl platinum (IV) as Pt precursor.
- At 298K and 100 atm, the spillover capacity for Pt/Ca-LSX reached 1.27 wt% (enhancement = 2.4X), translated to a vol. capacity of 21 g/L, based on pelletized, dehydrated density of 1.65 g/cm³. (DOE Target = 28 g/L for 2010)

Technical Progress Toward DOE Volumetric Target: Spillover on Zeolites at 298K

10wt% Ni doped by incipient wetness

The volumetric capacity for Ni/Ca-LSX is estimated to be 20 g/L, based on the dry pellet density of 1.7 g/cm³. (DOE volumetric target = 28 g/L for 2010)

(Wang & Yang, "Hydrogen Storage Properties of Low-Silica Type X Zeolites" *Ind. Eng. Chem. Res., DOI:* 10.1021/ie1003152)

Technical Progress Improving Rates of Charge/Discharge by Added Catalyst (TiF₃)

Hydrogen on 6wt%Pt/Maxsorb at 298K

Sample	BET SA (m²/g)	Pore volume $(cm^3/g)^a$	Median pore diameter (Å) ^a
Maxsorb	3277	1.60	17.6
Pt/Maxsorb	2882	1.50	14.7
Pt/Maxsorb-TiF ₃ -A	2825	1.47	14.7
Pt/Maxsorb-TiF ₃ -B	2801	1.47	14.6

Pt/Maxsorb doped with 2wt% TiF₃ Heat-treated at 473K (A) & 673K (B)

• Doping 2wt% TiF₃ decreased the H₂ capacity slightly due to decreased surface area and pore vol.

Technical Progress Improving Rates of Charge/Discharge by Added Catalyst (TiF₃)

Pressure step: (a) 0-28.6 atm for Pt/Maxsorb; (b): 0-28.7 atm for Pt/Maxsorb-TiF₃-A; (c) 0-28.7 atm for Pt/Maxsorb-TiF₃-B.

Pressure step: (a(77.7-52.8 atm for Pt/Maxsorb; (b): 78.1-53.1 atm for Pt/Maxsorb-TiF₃-A; (c) 77.9-52.9 atm for Pt/Maxsorb-TiF₃-B.

 Rates for both charge and discharge at 298K are effectively increased by doping 2wt% TiF3.

• XPS results indicate that C-F bonds are formed in the doped samples (Chen and Yang, Langmuir, DOI: 10.1021/la100172b)

Summary

- Metal doped zeolites are most promising in meeting DOE volumetric targets, e.g., the spillover storage capacities (at 298K and 100 atm) for Ni/Ca-LSX and CVD-5%Pt/Ca-LSX are 20 g/L and 21 g/L, respectively (DOE target = 28 g/L for 2010).
- Doping 2wt% TiF₃ on Pt/carbon nearly doubles the rates for both charge and discharge.
- O₂ plasma treatment, by forming lactone groups on carbon, increases the reversible amount of Pt/carbon from 1.2wt% to 1.32wt% (at 298K and 100 atm).
- For spillover storage, the desorption rate is always higher than that of adsorption, and the difference is the H-atom recombination rate.
- Spillover-storage is potentially capable of meeting DOE system targets.
- The results of this work can facilitate design for viable storage systems.

Overview/Highlights (2005 - 2010)

- Achieved 1.2 wt% hydrogen storage on a Pt-doped superactivated carbon (AX-21) (and 1.3 wt% for Pt/Maxsorb) at 100 atm and 298K. Capacities of 1.6wt% was obtained on Ru/carbon, and 1.1wt% on Ni/carbon.
- Achieved volumetric capacities of 20 g/L and 21 g/L, respectively (DOE target = 28 g/L for 2010), for Ni/Ca-LSX and CVD-5%Pt/Ca-LSX zeolites at 298K and 100 atm.
- Developed a bridge-building technique for spillover storage, and obtained up to 4wt% storage with MOFs at 298K and 100 atm (US and foreign patents pending)
- The spillover storage process is reversible at 298K, i.e., full storage capacity is obtained after degassing at 298K.
- Developed a simple isotherm equation that is applicable to all spillover sorbents
- For all spillover sorbents, the rates of discharge at 298K exceeded the DOE target of 0.02 g/s/kW.
- Developed catalysts that could increase the rates of both charge and discharge for spillover storage
- Increased spillover storage capacities on carbon by 10-40% by each of the following techniques: introducing surface oxygen groups, doping nitrogen and/or boron, plasma treatments, and dosing H₂ with hydrocarbon impurities
- Using deuterium isotope tracer, direct evidence for dissociation/spillover and reverse spillover was obtained.

Additional Slides

Outline of Proper Metal Doping Procedure by Incipient Wetness for Pt/AX-21

- Measure 200mg dry AX-21 or Maxsorb (dried at 393K). Add acetone until all particles are completely dissolved in a very dilute slurry (~20-100mL) (*a more dilute solution increases metal dispersion and hence the spillover enhancement*).
- Dissolve 26 mg H₂PtCl₆ (Aldrich, 99.9%) in at least 20mg acetone and add at a consistent dropwise rate over at least 10 min while stirring vigorously (*using overly concentrated Pt precursor solution and/or faster mixing will lead to poor and UNEVEN metal dispersion and substantially less spillover*¹⁻³). Stir vigorously for at least 10 min after the last drop is added.
- Sonicate (100 W, 42 kHz) the solution for 1 hour and then evaporate the excess liquid in an oven at 333K (allowing the solution to fully dry will lead to lowered enhancement).
- Dry the sample further in a quartz tube under He flow at 393K for 2 h. Change the flow to H₂ and raise the temperature to 573K at 1K/min and hold for at least 2 h (*holding for long times ensures complete reduction of Pt*)⁴. Switch the flow to He to purge (*purge for at least 4 h and cool at a rate no larger than 1K/min, otherwise Pt will react with air vigorous during sample transfer leading to poor metal dispersion*)¹.
- Sample is transferred to measurement system, using a degas procedure of 623K and a heating rate of no more than 5K/min under vacuum for 8 hours. (Degas at only 573K is not adequate since spiltover hydrogen during H₂ reduction will remain on the carbon surface.)¹
- In H₂ measurement, the leak rate that is acceptable for physisorption¹ is not acceptable for spillover,⁵ and allowing large dead spaces (in sample or reservoir cells) will lead to large errors.^{1,5}
- 1. Stadie et al. Langmuir, DOI: 10.1021/la9046758
- 2. Chen and Yang, *Langmuir*, DOI: 10.1021/la100172b
- 3. Tsao et al., J. Phys. Chem. Lett. 1, 1060 (2010).
- 4. Li and Yang, J. Phys. Chem. C 2007, 111, 3405.
- 5. Lachawiec et al., *Rev. Sci. Instr.* 79, 063906 (2008).