SRNL Technical Work Scope for the Hydrogen Storage Engineering Center of Excellence

Design and Testing of Metal Hydride and Adsorbent Systems

Theodore Motyka Assistant Director and SRNL Project Lead

Richard Chahine Director Hydrogen Research Institute UQTR Bruce Hardy SRNL Transport Phenomena Tech Area Lead

Stephen Garrison SRNL Tech Team Lead David Tamburello SRNL Tech Team Lead Claudio Corgnale SRNL Transport Phenomena

Savannah River National Laboratory

June 9, 2010

Project ID#ST092

This presentation does not contain any proprietary, confidential or otherwise restricted information

Overview

Timeline

- Start: February 1, 2009
- End: July 31, 2014

HSECoE

•20% Complete (as of 3/31/10)

Budget

- FY 09 Funding: \$888,945*
- •FY10 Funding: \$1,640,000*
- * Includes \$241,200/\$360,000 for the University of Quebec Trois Rivieres (UQTR) as a subrecipient for FY09/FY10

Barriers

- System Weight and Volume
- H₂ Flow Rate
- Energy Efficiency

Partners

Relevance: Overall Project Objectives

Phase 1: 2009-2011

- Compile all relevant metal hydride materials data for candidate storage media and define future data requirements.
- Develop engineering and design models to further the understanding of on-board storage transport phenomena requirements.
- Apply systems architecture to "up select" specific metal hydride systems capable of meeting DOE storage targets.

Phase 2: 2011-2013

- Develop innovative on-board system concepts for metal hydride and adsorption hydride materials-based storage technologies.
- Design components and experimental test fixtures to evaluate the innovative storage devices and subsystem design concepts, validate model predictions, and improve both component design and predictive capability.

Phase 3: 2012-2014

 Design, fabricate, test, and decommission the subscale prototype systems of each materials-based technology (adsorbents and metal hydrides storage materials).

Relevance: Phase 1 Objectives

Collect Media Property Data for Metal Hydrides and Adsorbents

- Kinetics data and models
- Thermal and mass transport data
- Evaluate completeness of available data
- Propose experiments to obtain missing data
- Interface with MHCoE and independent projects

Collect Operational Data for Storage Systems

- Heat transfer
- Mass transfer
- Identify additional data required

Develop General Format for Models

- Extension of "Hierarchical Modeling System"
- Apply preliminary system model boundary conditions

Assemble and Test Models

Conduct preliminary validation

Develop "Acceptability Envelope" of Media Characteristics Based on 2010 & 2015 DOE Technical Targets

Determine which existing metal hydrides have characteristics lying within the "acceptability envelope"

Apply System and Engineering Models to Evaluate Metal Hydride Systems Against 2010 DOE Technical Targets

 As the Metal Hydride System Architect determine which existing <u>metal hydride systems</u> have the potential to meet the Phase I Go/No-Go decision

Approach: SRNL's Major HSECoE Technical Activities

Approach: Phase 1 Milestones, Deliverables and Go/No-Go Criteria

Milestones

Compile Metal and Adsorption Hydride Data

- Chemical kinetics
 - Equilibrium hydrogen capacity
 - Model development
- Heat transfer parameters
- Mass transfer parameters
- Develop Preliminary Hierarchical Model
 - Use model to define "acceptability envelope" of metal and adsorption hydride properties to meet DOE2010 and 2015 goals
- Develop Material Test Plan and Matrix

Deliverables (Programmatic Go/No-Go Criteria)

- Preliminary Envelope of Properties for Acceptable Media
- Report Describing Phase 1 Activities and Results in Detail

Technical Go/No-Go Criteria

"Up Select" Media Falling Within Acceptability Envelope

Accomplishments: Material Operating Requirements

- Selected sodium aluminum hydride (NaAlH₄) material as initial baseline hydride candidate material for transport phenomena and system modeling development
- Databases completed for:
 - NaAlH₄ (with and without catalysts)
 - 2:1 LiNH₂:MgH₂
 - MgH₂ (without catalysts)
 - TiCrMn
 - Mg₂Ni
- Determination of properties not listed in literature is underway
 - i.e. Equilibrium pressure and packing density of 1:1 LiNH₂:MgH₂

Accomplishments: Metal Hydride Models

- Model Development and Validation
 - 0-D kinetics model MathCAD[®]
 - Baseline numerical model Comsol[®]
 - Model validation against data
- Optimization Studies
 - Unit cell models Comsol[®]
 - Results
 - Materials Requirements
- Novel Concepts
 - Assessment

Accomplishments: Metal Hydride Models: 0-D MathCAD[®] Kinetics Model

Example: NaAlH₄ + 4%TiCl₃

UTRC kinetics and saturation parameters

Assumptions:

- Isothermal
- Isobaric

HSECoE

Kinetic limitations only

Results

- Feed at 100 bar H₂ yields a significantly larger optimum temperature range
- Na₃AlH₆ saturation term reduces rate of formation of NaAlH₄
- Saturation weight fraction (C_{1,sat}) controls optimal temperature

0

100

110

Temperature (°C)

120

130

0.030

0.028

0.026

0.024

0.022

0.020

0.018

0.016 + 80

90

 $\mathrm{C}_{\mathrm{1,sat}}$

140

Accomplishments: Metal Hydride Models: Fill Time - Metal Hydride (NaAlH₄)

2010 target charging

UTRC Prototype 1 Kinetics times Mass H₂ Stored Pressure (bar) 280 5.5 kg in 4.2 min (2010 Target) Includes compressed gas 1800 in voids (~50% porosity) 1500 1200 Model shows Total Tank Volume: 0.32 m³ Charging time (s) 900 600 conditions 300 4 Tanks required to achieve 160 120 130 140 150 170 90 100 110 Length: 4 ft (1.2 m)specific fill Diameter: 1 ft (0.3 m) **UTRC Prototype 2 Kinetics** times for two (NaAlH₄) 320 materials with 840 Pressure (bar) 280 780 **Discharge Conditions:** different 720 240 660 kinetic 600 Pressure: 4 bar 540 200 properties 480 420 Temperature: 170 C 160 Charging time (s) 360 300 120 240 180 120 60 40 100 110 120 130 140 150 160 170 80 90 Temperature (C) 10 **HSECoE**

Accomplishments: Metal Hydride Models: Geometric Representation

This is a specific example of a generalized FEM model that can be applied to any geometry and set of thermal properties.

Sample Geometry Used in 3-D Model

Symmetry Boundary Sample Cross-Section Schematic Adiabatic Outer Edge H₂ Injection Tubes Coolant Tubes Symmetry Boundaries H₂ Injection Tube With Porous Wall Symmetry Boundary Symmetry Boundary Hydride Bed Coolant Tubes for Heat Transfer Fluid **Sample Geometric Parameters** Diameter 23.0 cm • Length 68.90 cm Fin Thickness 0.0313 cm Axial Spacing of Fins 0.64 cm 11 **HSECoE**

Accomplishments: Metal Hydride Models: NaAlH₄ Kinetics Vs Storage Vessel Charge Rate

Coolant and Feed Hydrogen Temperatures Fixed at 100°C Charging Pressure of 50 bar Transient Bed Loading 0.009 Initially 13,333.33 mol/m³ of NaH 0 mol/m³ of NaAIH₄ and Na₃AIH₆ 0.008 0.007 **Bed Weght Fraction** 0.006 0.005 0.004 0.003 Kinetics Only **Results show that for good heat** 0.002 - 3D Finite Element 13,333.33mol/m3 transfer conditions with NaAlH₄, 0.001 the charge rate is limited by 0 100 200 300 400 500 600 700 800 0 kinetics. Time (s)

Accomplishments: Metal Hydride Models: Novel Concepts

Advantages

Disadvantages

Media Packing

Construction Cost

also applies to MHS (below)

Longitudinal Fins

Symmetry assumed

- Each tube independent
- End effects neglected (Assumed 2-D)
- 60 wedge
- Spatially uniform H₂ pressure assumed

Explicit fin and tubes

Media-metal thermal contact resistances included

Conditions (Adjustable)

- 50 bar H₂ feed pressure
- 100 C cooling fluid

- Symmetry assumed (30°)
- Axial hydrogen injection at 50 bar
- Contact resistance not considered

Metallic Honeycomb Structure (MHS)

Accomplishments: Adsorbent Models: Scoping Model

- Unit cell
 - Half-thickness of fin & media
 - Central coolant channel
- Energy balance only
 - Prescribed pressure transient

Optimizes Parameters (uses Mathlab® - Comsol® Interface)

- Cooling tube (inner) diameter
- Cooling tube thickness
- Tube (horizontal) spacing
- Fin thickness
- Fin-Fin (vertical) spacing

- Executes quickly
- Analogous to SRNL heterogeneous cell metal hydride scoping models
- Suitable for large number of runs

Accomplishments: Adsorbent Models - Detailed MaxSorb® (AX-21®)

- Solves conservation equations for mass, momentum and energy in 2 or 3 dimensions
 - Uses weakly compressible Brinkman equations in all of flow domains
 - Includes thermal radiation
 - Temperature dependent fit for carbon specific heat
 - Correlations for non-ideal hydrogen properties from NIST REFPROP 23 V8.0 database
 - Valid for $0.05 \le P \le 35.0$ MPa and $70 \le T \le 450$ K
 - Compressibility factor
 - Enthalpy
 - Viscosity
 - Thermal conductivity
- AX-21[®] thermodynamic models for absolute adsorption and internal energy of adsorbed hydrogen obtained from:
 - Richard, Bénard and Chahine. "Gas Adsorption Process in Activated Carbon Over a Wide Temperature Range Above the Critical Point. Part 1: Modified Dubinin-Astakhov Model."
 - Richard, Bénard and Chahine. "Gas Adsorption Process in Activated Carbon Over a Wide Temperature Range Above the Critical Point. Part 2: Conservation of Mass and Energy."

Accomplishments: Adsorbent Models: Distribution of Stored H₂

Calculates hydrogen loading for actual UQTR Adsorbent System

Accomplishments: Adsorbent Models: Temperature Profiles

Compares temperature results from the model with those measured in the actual adsorbent system evaluated at UQTR

Accomplishments: Acceptability Envelope

The "Acceptability Envelope" or "BlackBox Analysis" determines range of characteristics necessary for coupled media and system to meet storage system performance targets

- Based on energy balance
- Serves as media screening tool
 - Guide for material development
- Uses technical targets to establish values for parameter "grouping"
 - Defines ranges of parameters for media & storage vessel

Current analysis applies to metal hydrides

- Rectangular coordinates (RC)
- Cylindrical coordinates (CC)

Accomplishments: Acceptability Envelope: Equation

For both rectangular and cylindrical geometries

Accomplishments: Acceptability Envelope:

Accomplishments: System Architect Analysis: Sodium Aluminum Hydride[¥]

based on system analysis performed by GM and UTRC

HSECoE

님

Safety and Toxicity values are currently rough estimates more quantitative values are being developed

Accomplishments: System Architect Analysis: Applying Acceptability Envelope Model to Various Materials

HSECOE

Collaborations

Material Operating Requirements

- Ewa Ronnebro, PNNL
- Jason Graetz, BNL (Alane data)
- Weifang Luo, Sandia (2 LiNH2: 1 MgH2 data)

Metal Hydride System Modeling

- Mikhail Gorbounov, Daniel Mosher, Bart van Hassel, UTRC
- Jacques Goyette, Maha Bhouri, UQTR
- Sudarshan Kumar, GM
- Kevin Drost, Goran Jovanivich, Anna Garrison, OSU

Adsorbent System Modeling

- Richard Chahine, M. A. Richard, UQTR
- Andrea Sudik, Ford

Acceptability Envelope Development and Applications

• Ewa Ronnebro, PNNL (Material Screening)

System Architect Analyses

- Sudarshan Kumar, GM
- Bart van Hassel, UTRC

HSECn**E**

• Michael Veenstra, Ford (Assistant MH System Architect)

Proposed Future Work

Metal Hydride Material Operation Requirements

- Complete databases for 1:1 LiNH2:MgH2 material with and without catalysts
- Determine needed engineering properties for all up selected materials

Metal Hydride System Modeling

- Perform more detailed modeling and scoping studies (includes H₂ mass transfer, H₂ in gas phase, coolant tube HX coefficients etc.)
- Examine longitudinal fins and additional, non-connecting fins
- Explore metal honeycomb structure including cell size and additional cooling
- Perform parameter sensitivity studies

Adsorbent System Modeling

- Conduct validation experiments that reduce parasitic heat transfer
- Compare performance of MOF-5[®] and MaxSorb[®]
- Use baseline models in 2 and 3 dimensions for design and sensitivity studies
- Conduct process-specific experiments (validate models and test conceptual vessel designs)
- Reduce models to form suitable for use in system analysis
- Apply models to prototype design

Acceptability Envelope Applications and Development

- Include effects of system parameters
- Complete application to metal hydrides (include coupled parameter ranges and candidate material evaluations)
- Develop and apply model for adsorbents

System Architect Analyses

- Extend System Architect analysis from Sodium Alanate to other metal hydride systems
- Complete System Architect analysis on metal hydride candidate systems for Phase I Go/No-Go Decision

Project Summary

Relevance

As both the overall lead and a major technical contributor to the HSECoE project, SRNL is using its extensive expertise in metal hydride technology, hydrogen materials compatibility, transport phenomena modeling & analysis, and hydrogen storage system & component design & fabrication to evaluate a solid-state hydrogen storage system for vehicle application that meets or exceeds DOE's 2010 and 2015 goals.

SRNL, through a subcontract grant, is also utilizing the expertise of the UQTR, which has been internationally recognized for its work in hydrogen adsorbent material and system development and testing.

Approach

In Phase I and II SRNL will:

- lead in the collection and screening of material property and engineering data for metal hydride and adsorbent materials.
- lead the overall project in Transport Phenomena modeling and analysis concentrating on metal hydride and adsorbent systems and components designs.
- lead System Architect activities for metal hydride systems.

Technical Accomplishments and Progress (as of 3/10)

- Collected material operating data for 5 metal hydride candidates and AX-21® adsorbent material (UQTR)
- Issued a technical report that evaluated the feasibility of membrane separation for metal hydride systems purification
- Developed acceptability envelope for metal hydrides
- Performed comparisons between metal hydride models & available data
- Developed baseline models for metal hydrides
- Performed optimization studies and modeling of various vessel configurations
- Completed System Architect analysis of Sodium Alanate vs. DOE 2010 technical hydrogen storage targets

Collaborations

HSEC

HSECoE partners, Materials Centers, SSAWG, IPHE, IEA etc.

Proposed Future Work (Phase I/II)

- Complete metal hydride and adsorption data collection
- Use detailed models to compare storage system behavior for different media (metal hydrides, MOF-5® and AX-21®)
- Develop and apply Acceptability Envelope to adsorbent systems
- Continue sensitivity analyses
- Pursue novel concepts (micro & mini-channel heat exchangers and structured media)
- Conduct preliminary system designs
- Complete System Architect analysis on final candidate metal hydride system for Phase I GO-NO-GO Decision