

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

TEAM: Chevron Technology Ventures, Hyundai-KIA Motor Company & UTC Power

Puneet Verma – Program Manager Dan Casey – Technical Director Chevron Hydrogen

June 2010

This presentation does not contain any proprietary or confidential information.

Overview

Timeline

- Start: January 15, 2004
- End: December 31, 2009
- 100% complete

Budget

-	
Total project funding	\$94.5 mil
DOE share	\$38.1 mil
Contractor share	\$56.4 mil
Funding received in FY09	\$ 2.9 mil
Funding remaining on award	\$ 6.8 mil (est.)

Barriers

- Fuel cell vehicles data
- H₂ refueling infrastructure data

Team Members

- Hyundai-KIA Motor Companies
- UTC Power
- Hyundai-KIA America Technical Center
- Alameda-Contra Costa Transit
- Tank Automotive Research, Development and Engineering Center
- Southern California Edison

Relevance: Technology Validation Technical Plan Barriers and Objectives

- Fuel cell performance
 - Public domain statistical data for vehicles
 - 33 fuel cell vehicles collecting durability and range data on the road
 - » fuel cell durability
 - » vehicle range
 - Vehicle driveability in extreme environments
 - Operation in wide range of climates
 - » Low-temperature startup
 - » Hot climates
- Refueling infrastructure performance
 - Low availability of hydrogen production systems
 - Six separate new technologies deployed for this program
 - Safe and convenient refueling by drivers
 - 24/7 safe fueling by trained drivers

Approach - Vehicles

- 33 vehicles on the road
- Three maintenance facilities

Approach – Infrastructure

- Five stations
- Public/private partnership
- Onsite generation

Oakland, CA Steam Methane Reformer Open: December 1, 2005 Close: 3Q 2010

Selfridge, MI Steam Methane Reformer Open: April 4, 2007 Closed: 2Q 2010

Orlando, FL Steam Methane Reformer Open: January 31, 2007 Closed 1Q 2010

Collaborations – Partners

Progress – Hydrogen Training

First Responder Training

- Station and vehicle safety
- Classroom and hands-on training
- Initial training on station opening
- Refresher training offered yearly
 - Train new hire personnel
 - Train new transferred personnel
 - Prepare for response to incidents

Progress – Hyundai Update

- Vehicle fleet
 - Fleet completed
 - Mileage accumulation
 - Status
 - DOE program vehicles
 - » 29 retired
 - » Four operating internal fleet
 - Hyundai FCV
 - » Three vehicles
 - » More to be deployed in California
- Chino H₂ station
 - Transfer asset continue operation
 - Building
 - Dispenser
 - Compressor
 - Storage

Lesson Learned – Compression Efficiency

- Energy per kg compressed varies:
 - Production rate
 - Cooling fan load
 - Outlet pressure

- Variable speed drive not currently available
 - Spillback design
 - Provides safety
 - Ensures no vacuum

hydrogen.

Lesson Learned – Communications Cable Connector Service Life

Difference Between Tank and Ambient Temperature Increases With Connector Service Life

Barrier: Hydrogen Refueling Infrastructure Performance

Lesson Learned – Pressure Drop

Pressure Drop From Storage to Vehicle

- Increases storage requirements
- Function of Darcy equation
 - Flowrate
 - Pipe diameter
 - Equivalent pipe length
- Varies by station design
 - Comparison
 - 2.5 kg vehicle fill
 - 152 liter tank

Barrier: Hydrogen Refueling Infrastructure Performance

Technical Accomplishment – Type III vs. Type IV Tank Temperature Rise

Temperature Rise During Fueling

- Comparison 1,000 fueling events
 - Type IV 160 liter tank
 - Type III 152 liter tank
- Type IV composite
 - No aluminum liner
 - Proprietary materials of construction
 - Results can vary by manufacturer
 - Lower overall heat transfer coefficient
 - Less internal heat sink
- Temperature sensor
 - Accurate reading critical to safe fueling
- Higher internal temperatures during fueling
 - Fueling events can be temperature limited

Collaboration – University of Miami Hydrogen Modeling

CFD modeling of hydrogen storage leak

- 575 SCFM leak
- 0.05" diameter orifice
- Ground effect and wall effect included
- Model compared to real-world helium leak
- Extent of combustible cloud determined

Collaboration – University of Miami Hydrogen Modeling Video

Lesson Learned – Design Rating of Breakaway Adapter

- Adapter is required to connect dispenser tubing to breakaway
- Fitting pressure ratings are not equal on standard fitting
 - Female fitting has lower pressure rating
 - Female adapter fitting 4,900 psig
 - Male G ¹/₂-in straight thread 7,700 psig
- Custom fittings are available
 - Can meet pressure rating
 - Require increased wall thickness
- Findings were submitted to H2Incidents.org

Future Plans – Hyundai-Kia New FCV vehicles

2nd Gen Fuel Cell SUVs: Deploy 34 in Korea
3rd Gen Fuel Cell SUVs: Deploy 100 in Korea
Deploy 50+ overseas
including the USA

2nd Gen. Tucson/Sportage Hyundai 100 kW stack

3rd Gen. Borego/ Tucson ix SUV Hyundai 100+ kW stack

Fuel Cell Concept Vehicle

- Designed for fuel cell from ground up
- Uses future generation Hyundai fuel cell technology
- System: 100 kW stack power
- 70MPa compressed hydrogen
- Vehicle performance at 370-mile range

Future Work

- Publish final report
- Complete UTC Power technology development internally and with OEMs toward 2015 targets
 - Advancements in durability
 - Reduction in Pt loading
 - Improvement in power density
 - Cost reduction of stack components
 - Freeze capability
- Deploy 16 fuel cell buses in 2010
 - UTC Power Pure Motion[®] PM 120 power plants
 - 12 buses at AC Transit and local agencies
 - Four buses at CT Transit in Hartford, CT

Program Summary

Relevance

- Demonstrate safe, practical hydrogen technologies in real-world settings
- Approach
 - 33 fuel cell vehicles Collect on-road data
 - Six onsite hydrogen generators Introduce new distributed generation technology
- Technology transfer
 - Statistical data provided to NREL
- Technical accomplishments and progress
 - Cold start-up
 - Capability developed to meet 7% to 10% of a conventional gasoline station's daily fuel dispensing requirement using onsite hydrogen production
 - Safe fueling by drivers
- Proposed future work
 - Issue final report