HYDROGEN TO THE HIGHWAYS

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

Research & Development North America, Inc.

Ronald Grasman: Daimler AG June 10, 2010

A Mercedes-Benz

Project #: TV004

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Program Overview

US Dept. of Energy Fuel Cell Vehicle and Infrastructure Cooperative Program

Timeline-Project Start Date: 01/07/04-Project End Date: 09/30/10*-Percent Complete: 90%	Partners - Daimler – DTE Energy - MBUSA – NextEnergy
Budget- \$88.8M Total Project Funding- \$44.4M Federal Share- \$44.4M Industry Share- \$5.1M FY05 Funding- \$6.3M FY06 Funding- \$7.6M FY07 Funding- \$5.2M FY08 Funding- \$3.0M FY09 Funding	 Barriers A. Vehicles B. Storage C. Hydrogen Refueling Infrastructure D. Maintenance and Training Facilities E. Codes and Standards

Relevance

- Address barriers to move toward technology readiness
- Align the Mercedes goals with DOE's Hydrogen Program objective

DOE Barriers	;	Mercedes Teams' Project Goal				
		 Record, collect and report data from fuel cell vehicles and hydrogen fueling stations to validate DOE performance targets 				
	Icture	Performance Measure	2009	2015		
		Fuel Cell Stack Durability	2000 hours	5000 hours		
		Vehicle Range	250 ⁺ miles	300⁺ miles		
	Hydrogen Cost at Station	\$3/gge	\$2-3/gge			
D. Maintenance and Tra Facilities						
E. Codes and Standards	,	 Participate in various working groups to ensure continuous progress 				

Objectives

Program Objectives

Collect data to evaluate the technology status of FCV and H₂ infrastructure

2009/10 Objectives

- Maintain smooth operation of Gen I and 70MPa upgraded FCVs
- Continue internal operations of Gen II vehicles while preparing for Gen II customer operations
- Continue the high quality of technical vehicle and infrastructure data reporting
- Raise public knowledge of hydrogen technology and demonstration projects
- Operate DTE hydrogen fueling station
- Maintain project safety

Approach: Technical

- Operate Gen-I and Gen II vehicles under real world condition to monitor DOE performance targets
- Install and maintain data acquisition system that collects vehicle and hydrogen fueling data

- Set up initial fueling network to support FCV fleet
- Establish maintenance and service facilities to support FCV operations
- Support codes and standards activities

Approach: Milestones

Alignment Between the Workplan/Milestones of DOE and Team

Accomplishments and Progress Gen-I Operations

Designed for a 2-year operation Continuing to accumulate mileage for the 6th consecutive year Submitted over 100 DVDs of raw data to NREL

Accomplishments and Progress Transition to Gen II Technology

B Class F-Cell Generation 2

B Class F-Cell:

- Higher stack lifetime (more than 2000h)
- Increased power
 - (65kW, 87hp→100kW, 134hp)
- Higher reliability
- Longer range
 - (160km, 100 miles → 400km, 250 miles)
- Freeze start ability to -25°C, -13°F
- Li-lon battery

) Mercedes-Benz

8

Accomplishments and Progress Gen II Technology

Completed internal operation and testing of Gen II pre-production vehicles

Hot Weather Testing

Durability

UNITED STATES

Department of Energy

- Internal Operation/Testing
 - Cold start capability
 - Safety
 - Durability
 - Hot weather conditions
 - NVH

Raw data to NREL

- Internal operations
- Acceleration
- Durability
- Gradeability
- Efficiency
- Cold Start
- Fleet Data Acquisition

Cold Weather Testing

Dynamometer

DAIMLER

Mercedes-Benz

9

Accomplishments and Progress Gen II Deployment

Preparing for Gen II Pre-Commercialization

Dealerships

- Production assembly (similar to conventional ICE vehicles)
- Dealership
 involvement
- Maintenance
- Customer selection

Production

Accomplishments and Progress Gen II Deployment

MBRDNA is Preparing for Fueling Infrastructure

- <u>Supported ARB/CEC</u> by recommending station specifications, site locations, supplier qualification guidelines and providing OEM commitment letters
- <u>Worked with CaFCP</u> to devleop action plan detailing strategy for deploying H₂ fueling stations and FCVs
- **Collaborated with other OEMs** to coordinate locations of future fueling stations

DAIMLER

Mercedes-Benz

ENERG

11

Accomplishments and Progress Infrastructure

DTE Energy Continuing Operations

University Student Group touring the Hydrogen Technology Park

- Technical Data:
 - Hydrogen produced by electrolysis
 - Storage capacity of 140 kg
 - Capable of dispensing 35 kg/day
- Accomplishments:
 - Operational since 2004
 - Cold weather areas
 - Community outreach
 - New electrolyzer & dispenser installed winter of 2008-2009
 - Improved equipment reliability with new equipment

Accomplishments and Progress Codes and Standards

MBRDNA Participated in various working groups to establish Codes and Standards essential to clear the way for FCV commercialization

- First worldwide fueling guideline published in March
 - J2601: Fueling Protocols for Gaseous Hydrogen Surface Vehicles
 - First worldwide guideline from an SDO establishing a baseline for fueling of hydrogen FCVs
 - New ARB/CEC hydrogen stations most likely to follow J2601
- Continued participation in SAE working groups
 - J2600: Compressed Hydrogen Surface Vehicle Fueling Connection Devices
 - J2719: Information Report on the Development of H₂ Quality Guideline for Fuel Cell Vehicles
 - J2578: Recommended Practice for General Fuel Cell Vehicle Safety
 - J2579: Technical Information Report for Fuel Systems in Fuel Cell and Other H₂ Vehicles
 - Vehicle Battery Standards Committee
- Initial involvement in ISO TC197 WG 5
 - ISO DIS 17268: Gaseous hydrogen land vehicle refuelling connection devices

SAE International

Accomplishments and Progress Codes and Standards – Next Energy

Continual progress in the development of appropriate Codes and Standards, updating hydrogen stakeholders of current and future directions from state, national and international perspectives.

- Database (NextEnergy)
 - Hydrogen Permitting Officials database posted to live NextEnergy Center website
 - Offered to DOE as a tool to identify H2 AHJs in Michigan
 - Hydrogen Station database posted to live NextEnergy Center website.
 - Offered to the H2 industry to voluntarily catalog installed infrastructure world-wide
- Annual Conference (NextEnergy)
 - Offered in 2007, 2008 and 2009
 - Slated for Fall/Winter 2010
 - Focus on current industry efforts toward C&S development
- NFPA 2 Hydrogen Technologies Code
 - NextEnergy is a voting member of the Technical Committee
 - Instrumental in developing this extraction code for the industry
 - Intended to provide clarity to the infrastructure design process and to streamline permitting

Accomplishments and Progress Safety

- Safety practices insured
 - No safety incidents
- Customer satisfaction

Operation & Maintenance

 Updated Project Fleet Vehicle Incident

Management Plan

Modified Safety Plan

Emergency Response

- Supported multiple emergency responder trainings
- Convinced station operators to remove PPE requirement

Station Commissioning

 Commissioned and tested 70MPa station in Burbank, CA

Accomplishments and Progress Public, Political & Industry Outreach

Participated in outreach activities to educate the public, encourage government support and raise awareness about the Team's commitment to the technology

Public Outreach

Hydrogen Road Tour

LA Auto Show

Washington Auto Show

Collaboration

Future Work

- Prepare for Gen II demonstrations
- Maintain and finalize smooth operation of Gen I fuel cell vehicles with on-going service, maintenance and customer support
- Begin customer operations of production-level Gen II vehicles
- Maintain the high quality of technical vehicle and infrastructure data reporting to NREL/DOE
- Enlist support of corporate communications for a more expansive national outreach in addition to ongoing community and industry related events

Lessons Learned

- Vehicle
 - Extensive real world experience provided by DOE's Demonstration and Validation Project has shown that vehicles are ready for the commercialization phase
- Infrastructure
 - Need public, customer-friendly fueling stations
 - Upgrade older, strategic stations
 - Coordination with OEMs to identify station locations
- Continued DOE funding and political support is essential

Summary

- Improved equipment reliability and maintained operation of the DTE Station
- Continued mileage accumulation of Gen I vehicles
- Finalized internal operation and testing of Gen II pre-production vehicles
- Preparing for Gen II deployment with external customers and dealerships
- Participated in various working groups to ensure continuous progress with regards to Codes and Standards
- Continued data collection, analysis and reporting

