

Technology Validation

John Garbak

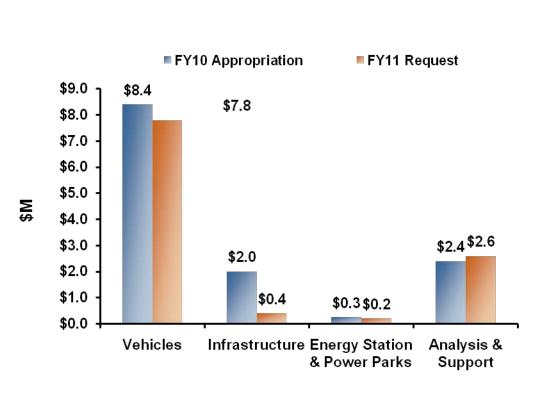
2010 Annual Merit Review and Peer Evaluation Meeting (8 June 2010)

Goal: Validate complete systems of integrated hydrogen and fuel cell technologies for transportation, infrastructure and electricity generation applications under real-world operating conditions

Objectives:

- Validate hydrogen and fuel cell technologies in parallel
- Identify current status of the technology
 - Assess progress toward technology readiness
 - Provide feedback to H₂ Research and Development

Performance Measure	2009	2015
Fuel Cell Stack Durability	2000 hours	5000 hours
Vehicle Range	250⁺ miles	300⁺ miles
Hydrogen Cost at Station	\$3/gge	\$2-3/gge



Budget

FY 2011 Request = \$11.0 M

FY 2010 Appropriation = \$13.1 M

EMPHASIS

- Final report from two learning demonstration teams to be completed
- Advanced fuel cell vehicles being introduced and data collection to continue in final two projects
- Collect operational and maintenance data at Combined Heat and Power site at Orange County Sanitation District in Fountain Valley, CA
- Continue data collection of fuel cell buses

Through data collection during the Learning Demonstration many challenges have been met

- Lack of fuel cell vehicle performance and durability data
 - Learning Demo and FC Bus evaluation have generated significant quantities of fuel cell vehicle data that have been analyzed and published
- Lack of refueling infrastructure performance and availability data
 - Tech Val projects have analyzed many aspects of H2 refueling infrastructure, including refueling rates, safety, maintenance, production efficiency, and availability
- Assess fuel cell start-up and operation in 3 different climatic conditions and ability to start fuel cells in cold climates
 - FCVs have demonstrated acceptable cold start performance and hot start durability
- Evaluation of filling vehicles at 700 bar
 - Over 5,500 fueling events performed at 700 bar, with an average fill rate of 0.63 kg/min
- Need to address fuel cell vehicle and infrastructure interface issues
 - Communication fills (vehicle talks to station during fill) have been evaluated, and on average communication fills are 30% faster than non-communication fills

2010 Progress & Accomplishments

- Fuel cell durability
 - 2,500 hours projected (nearly 75K miles)
- Over 2.5 million miles traveled
- Over 106K total vehicle hours driven
- Fuel cell efficiency 53-59%
- Over 150,000 kg of hydrogen produced or dispensed
- 144 fuel cell vehicles and 23 hydrogen fueling stations have reported data to the project
 - There are 17 vehicles and 15 fueling stations active in the project

Summary – Key Performance Metrics

Vehicle Performance Metrics	Gen 1 Vehicle	Gen 2 Vehicle	2009 Target
Fuel Cell Stack Durability			2000 hours
Max Team Projected Hours to 10% Voltage Degradation	1807 hours	2521 hours	
Average Fuel Cell Durability Projection	821 hours	1062 hours	
Max Hours of Operation by a Single FC Stack to Date	2375 hours	1261 hours	
Driving Range	103-190 miles	196-254 miles	250 miles
Fuel Economy (Window Sticker)	42 – 57 mi/kg	43 – 58 mi/kg	no target
Fuel Cell Efficiency at ¼ Power	51 - 58%	53 - 59%	60%
Fuel Cell Efficiency at Full Power	30 - 54%	42 - 53%	50%

Infrastructure Performance Metrics			2009 Target
<i>H</i> ₂ Cost at Station (early market)*	On-site natural gas reformation \$7.70 - \$10.30	On-site Electrolysis \$10.00 - \$12.90	\$3/gge
Average H ₂ Fueling Rate	0.77 k	1.0 kg/min	

* DOE independent panels concluded at 500 replicate stations/year: Distributed natural gas reformation at 1500 kg/day: \$2.75-\$3.50/kg (2006) Distributed electrolysis at 1500kg/day: \$4.90-\$5.70 (2009)

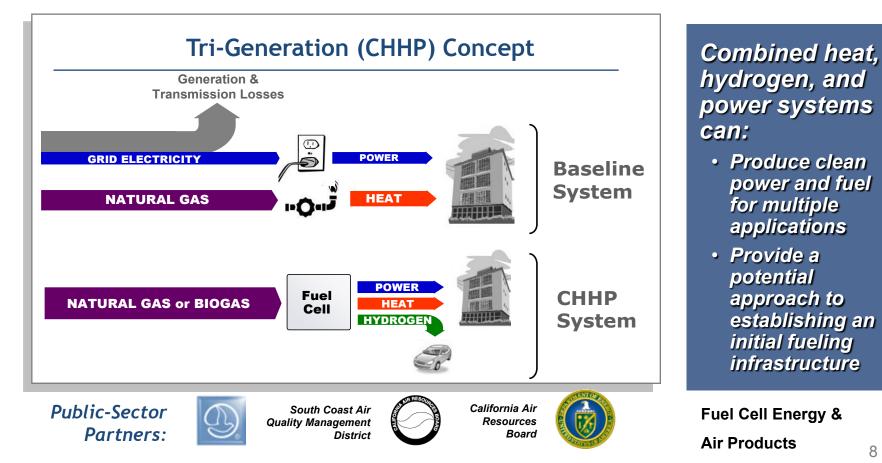
NREL has collected data for DOE and FTA on 9 FCBs in service at 5 sites: **AC Transit** SunLine **CTTRANSIT** VTA Columbia, SC Traveled: ~ 395,000 miles **Dispensed:** 80,304 kg H₂

Site/Location	State	Eval.			09				10			r)11			-	12	
		Funding	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
AC Transit/ SF Bay Area	CA) do						C	:A Z	EB.	Adv	anc	ed I	Dem	0			
SunLine/ Thousand Palms	CA		F	СВ														
SunLine/ Thousand Palms	CA	E Technology Validation							Adv	anc	ed l	FCB	Pro	oject				
CTTRANSIT/ Hartford	СТ	∠ al ∠ al	F	СВ	Dem	0												
City of Burbank/ Burbank	CA	DOE						Bu	rbar	ık F	СВ							
AC Transit/ Oakland	CA	s		Ace	cel.T	est												
SunLine/ Thousand Palms	CA	II Bus										Am	nerio	can	FCE	B De	mo	
CTTRANSIT/ Hartford	СТ	Cell						N	utm	eg F	lybı	id F	СВ	Den	10			
USC, CMRTA/ Columbia UT/ Austin	SC, TX	FTA National Fuel Program							Ну	/brio	d FC	В						
Logan Airport / Boston	MA	Proç										N	IA F	12 F(СВ	Dem	10	
Albany / NY	NY	latic							Lię	ght-	wt F	СВ						
TBD / NY	NY	Z Z										NYP	A H	2 Po	owe	red	FCE	3
SFMTA / San Francisco	CA	i E						FC	AP	UH	ybri	d						
Demonstration sites color coded b	by geogra	aphic area:			lorthe	rn Ca	alifori	nia		Ne	w En	gland	1		Sout	heast		
National Fuel Ce Progr	ell Bu	s		s	Southe	ern C	alifor	nia			w Yo	-			South	ו		

Fuel economy results: 39% to 141% better than diesel and CNG buses

www.nrel.gov/hydrogen/proj_tech_validation.html

Estimate of data collection/evaluation - schedule subject to change based on progress of each project


U.S. Department of Energy

2010 Progress & Accomplishments

We are participating in a project to demonstrate a combined heat, hydrogen, and power (CHHP) system using biogas.

- System has been designed, fabricated and shop-tested
- Improvements in design have led to higher H_2 -recovery (from 75% to >85%) •
- On-site operation and data-collection planned for FY10 FY11

- Continue data collection of the advanced fuel cell vehicles in the Learning Demonstration
- Begin to collect data from the Fountain Valley Energy Station
- Continue data collection of fuel cell buses, stationary fuel cell and fork lifts

- This is a review, not a conference
- Presentations will begin precisely at the scheduled times
- Talks will be 20 minutes and Q&A 10 minutes
- Reviewers have priority for questions over the general audience
- Reviewers should be seated in front of the room for convenient access by the microphone attendants during the Q&A
- Please mute all cell phones, BlackBerries, etc.

- Deadline for final review form submittal is <u>June</u>
 <u>18th</u>
- ORISE personnel are available on-site for assistance. A reviewer lab is set-up in room 8216 and will be open Tuesday –Thursday from 7:30 AM to 6:00 PM and Friday 7:30 AM to 3:00 PM.
- Reviewer feedback session Thursday, at 1:30pm, (after lunch) in the room of the last session.

Technology Validation

John Garbak

Technology Validation Team Leader

202-586-1723

John.garbak@ee.doe.gov

National Renewable Energy Laboratory Support:	Golden Field Office Project Officers:
Keith Wipke	Doug Hooker
Sam Sprik	Jim Alkire
Jennifer Kurtz	Lea Yancey
Todd Ramsden	

Leslie Eudy