

U.S. DEPARTMENT OF

Fuel Cells Sub-program - Session Introduction-

Dimitrios Papageorgopoulos

2011 Annual Merit Review and Peer Evaluation Meeting May 10, 2011

Goal and Objectives

GOAL: Develop and demonstrate fuel cell power system technologies for stationary, portable, and transportation applications

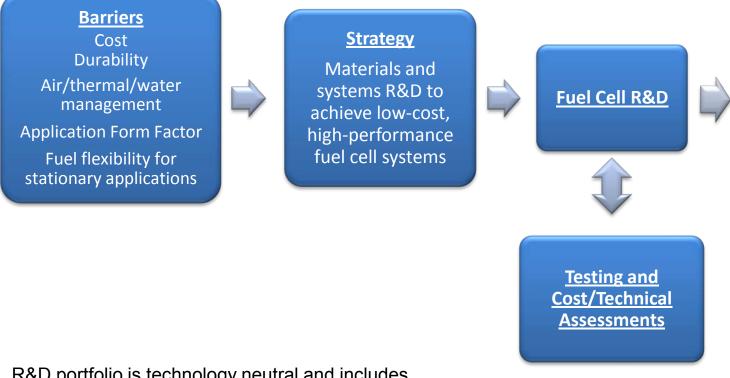
Develop fuel cell systems to meet DOE targets, including:

Transportation:

- Efficiency of 60% at 25% of rated power
- Cost of \$30/kW
- Durability of 5000 hours
- Stationary (CHP):
 - Efficiency of 45%
 - Durability of 60,000

Auxiliary Power Units:

- Efficiency of 40% at rated power
- Cost of \$1000/kW
- Durability of 20,000 hours


Portable Power:

- Power density of 100 W/L
- Durability of 5000 hours

Challenges & Strategy

The Fuel Cells sub-program supports research and development of fuel cell and fuel cell systems with a primary focus on reducing cost and improving durability. Efforts are balanced to achieve a comprehensive approach to fuel cells for near-, mid-, and longer-term applications.

Membranes GDL s and Sea

GDL s and Seals Bipolar Plates MEAs and Integration High-Temperature Fuel Cells

FOCUS AREAS

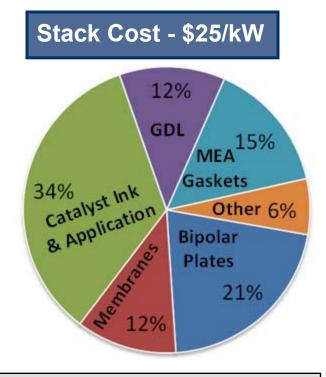
Stack Components

Catalysts

Operation and Performance Mass transport Durability Impurities

Systems and Balance of Plant (BOP) BOP components Stationary power Fuel processor subsystems Portable power APUs and emerging markets

R&D portfolio is technology neutral and includes different types of fuel cells


Challenges: Catalysts and Supports

- Platinum (Pt) cost is ~34% of total stack cost
- Catalyst durability needs improvement

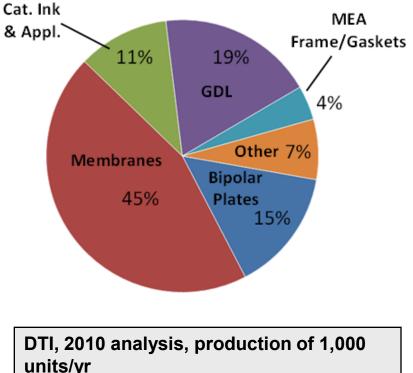
Four Strategies for Catalysts & Supports R&D:

- Lower PGM Content
 - Improved Pt catalyst utilization and durability
- Pt Alloys
 - Pt-based alloys with comparable performance to Pt and cost less
- Novel Support Structures
 - Non-carbon supports and alternative carbon structures
- Non-PGM catalysts
 - Non-precious metal catalysts with improved performance and durability

U.S. DEPARTMENT OF

DTI, 2010 analysis, scaled to high volume production of 500,000 units/yr

Used \$1100/Troy Ounce for Pt Cost

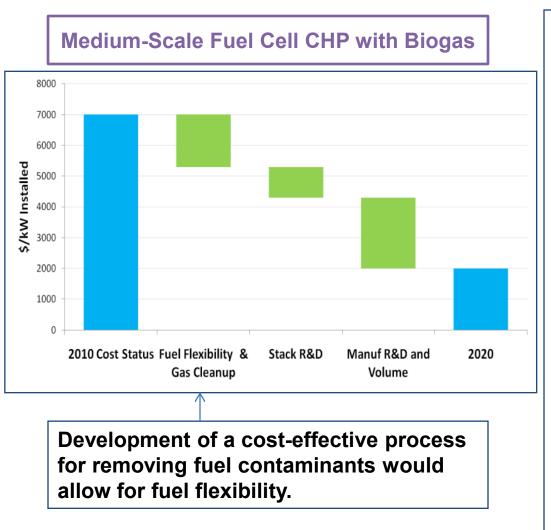

Challenges: Membranes

Challenges:

- Membranes account for 45% of stack cost at low volume
- Limits on operating range
- Chemical and mechanical durability

Membrane R&D:

- High-Temperature, Low Humidity Conductivity
- Phase segregation (polymer & membrane)
- Non-aqueous proton conductors
- Hydrophilic additives
- High Conductivity and Durability Across Operating Range with Cycling
- Mechanical support or membrane reinforcement
- Chemical stabilization (additives, end-group capping)
- Polymer structure (side chain length, grafting, cross-linking, backbone properties, blends, EW)
- Processing parameters (temperature, solvents)
- New materials


Stack Cost - \$144/kW

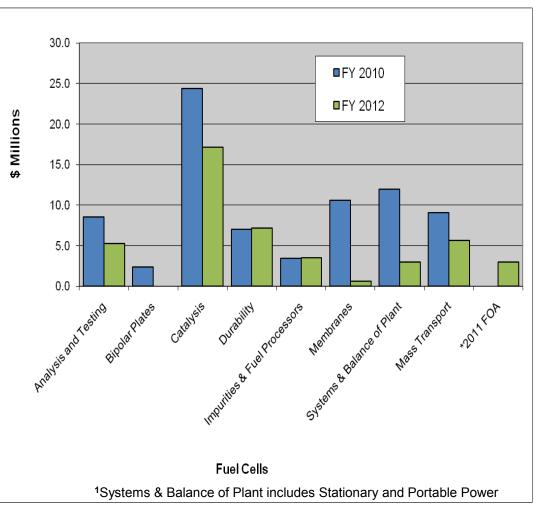
Challenges and Strategies: CHP

Technical and cost gap analyses of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary power plants identify pathways for reducing costs.

Key areas identified:

➢For MCFC, the service life of the fuel cell stack needs to be extended by:

- reducing electrolyte losses
- reducing cathode dissolution
- increasing the stability of the electrolyte support material


➢For PAFC, cost reductions could be achieved by reducing:

- platinum loading
- the impact of the anion adsorption on the cathode catalyst

Fuel Cells Budget

FY 2012 REQUEST = \$45.4M FY 2010 APPROPRIATION = \$77.4M

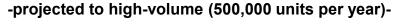
EMPHASIS:

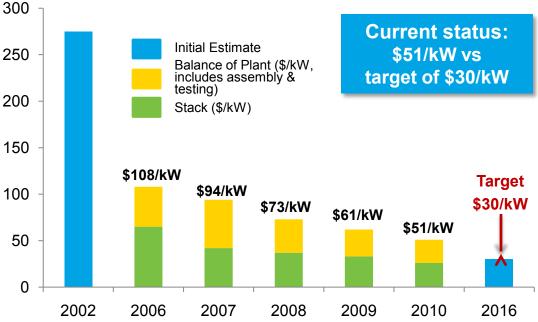
is on science and engineering at the cell level, and from a systems perspective, on integration and component interactions:

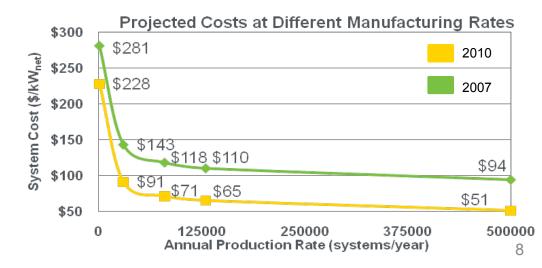
- Develop improved fuel cell catalysts and membrane electrolytes
- Identify degradation mechanisms and approaches for mitigating the effects
- Characterize and optimize transport phenomena improving MEA and stack performance
- Investigate and quantify effects of impurities on fuel cell performance
- Develop low-cost, durable, system balance-ofplant components

*subject to appropriations

Progress: Fuel Cells

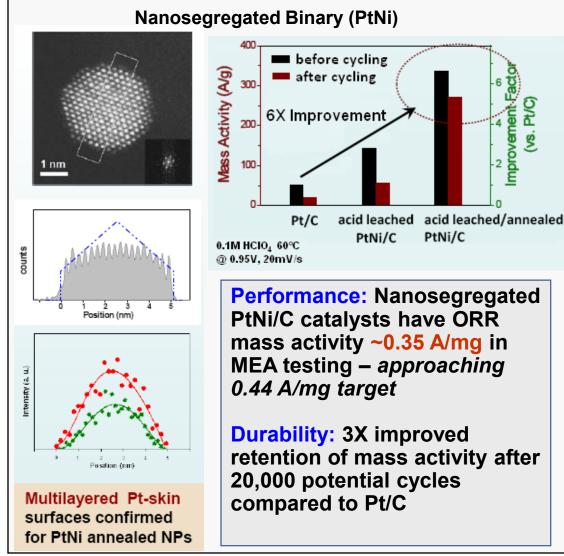

Reduced the projected high-volume cost of fuel cells to \$51/kW (2010)*

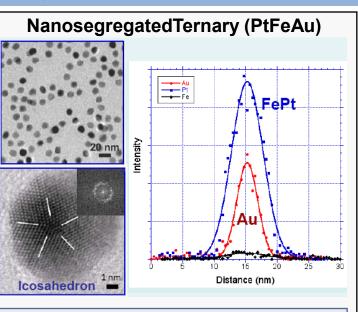

- More than 30% reduction since 2008
- More than 80%
 reduction since 2002


*Based on projection to high-volume manufacturing (500,000 units/year).

**Panel found \$60 – \$80/kW to be a "valid estimate": <u>http://hydrogendoedev.nrel.gov/peer_reviews.html</u>

http://www.hydrogen.energy.gov/pdfs/10004_fuel_cell _cost.pdf Projected Transportation Fuel Cell System Cost





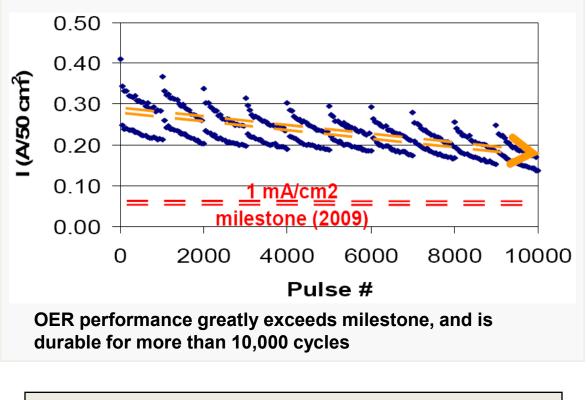
Progress: Catalysts

Catalysts: Nano-segregated binary and ternary catalysts demonstrate performance more than 6X that of platinum.

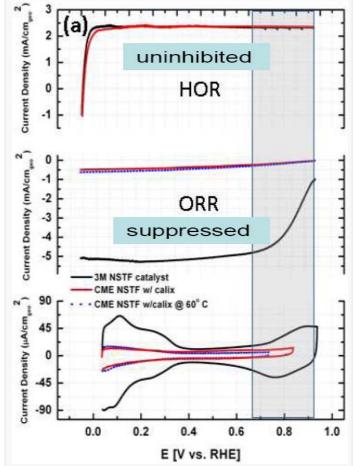
Performance:

FePt(shell)/Au(core) demonstrates ORR mass activity more than 3X that of Pt/C

Durability:

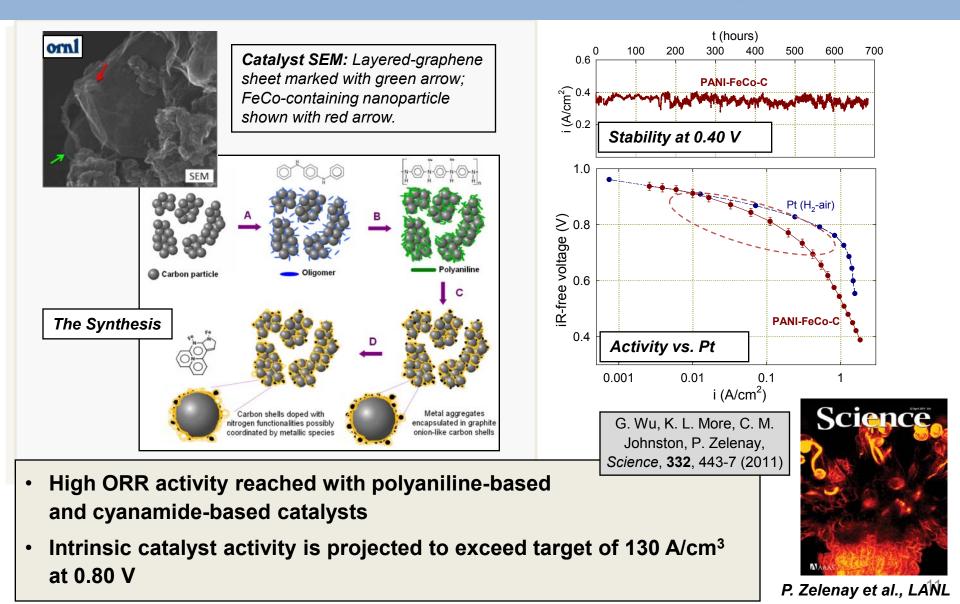

Maintains 80% of initial activity after 80,000 potential cycles (cf. less than 20% for Pt/C)

Progress: Catalysts

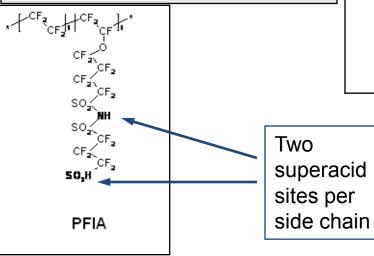

Catalysts: New cathode and anode catalysts demonstrate durability under startup/shutdown.

Cathode side: enhance OER to prevent catalyst/support oxidation, while maintaining ORR performance

New catalyst modifiers allow achievement of 10,000 simulated startup/shutdown cycles with only 2 µg/cm² additional PGM


Anode side: suppress ORR to prevent cell reversal, while maintaining HOR performance

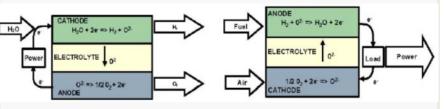
Progress: Catalysts


Catalysts: Non-PGM catalysts demonstrate activity approaching that of platinum.

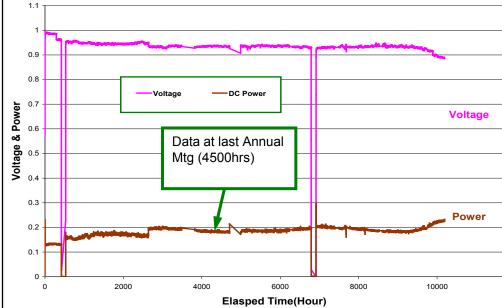
Membranes: Innovative membranes demonstrate high conductivity at low RH.

- PFIA membranes meet most DOE targets for performance and durability
- PFIA maintains high crystallinity at lower equivalent weight than PFSAs
 → better mechanical properties
- High conductivity with PFIA under dry conditions: 0.087 S/cm @ 120 C, 25% RH

Remaining ga	p	3M 2011 Status	2015 target
ASR at 120° C (H ₂ O pp 40-80 kPa)	Ohm cm [⊉]	.023 (40 kPa) 0.012 (80kPa)	<0.02
ASR at 80° C (H ₂ O pp 25-45 kPa)	Ohm cm ²	0.013 (25 kPa) 0.006 (44 kPa)	<0.02
ASR at 30° C (H ₂ O pp 4 kPa)	Ohm cm ²	0.02 (3.8 kPa)	<0.03
ASR at -20° C	Ohm cm ²	0.10	<0.2
0 ₂ cross-over	mA/cm ²	≤1.0	<2 🌂
H ₂ cross-over	mA/cm ²	≤1.8	<2 😽
<u>Durability</u> Mechanical (%RH Cycle)	Cycles	>20,000	>20,000
Chemical (OCV)	Hours	>1100+	>500


S. Hamrock et al., 3M

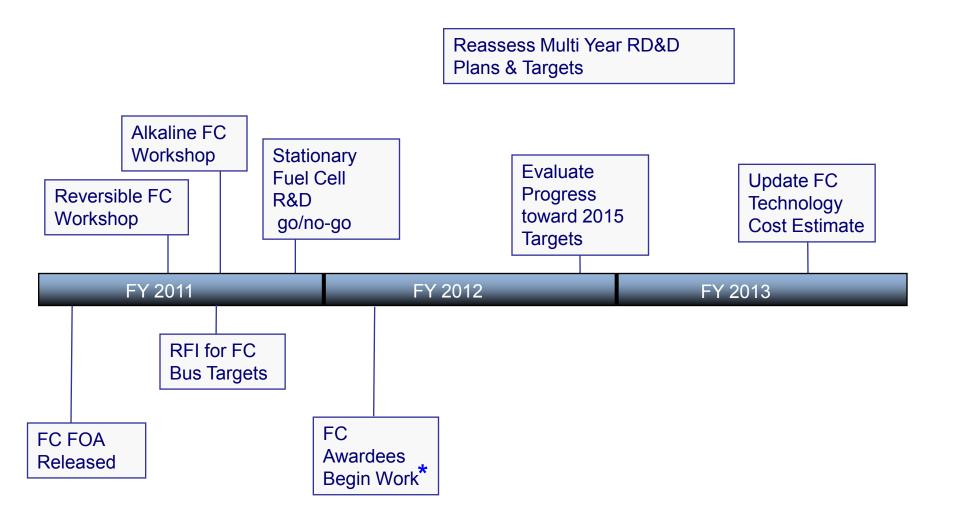
Progress: SOFC


Stationary SOFCs: Improved performance and durability of SOFC systems

Reversible SOFCs under development at Versa Power Systems provide hydrogen generation and energy storage capability

Project Targets Met in 2011:

Metric	Target	Status
✓ Performance (Area specific resistance in both SOFC and SOEC operating modes)	< 0.3 Ω-cm²	0.223 Ω-cm ² in SOEC 0.224 Ω-cm ² in SOFC
Degradation (Overall decay rate)	< 4% per 1000 hours	~1.5% per 1000 hours
☑ Operating Duration	> 1000 hours	1005 hours (as of Go/No-Go Decision)
☑ Operating Current Density	> 300 mA/cm ²	500 mA/cm ²



Acumentrics has achieved more than 10,000 hours operation of an SOFC in 2011 – more than double the 2010 durability

N. Bessette et al., Acumentrics

Session Instructions

- This is a review, not a conference.
- Presentations will begin precisely at the scheduled times.
- Talks will be 20 minutes and Q&A 10 minutes.
- Reviewers have priority for questions over the general audience.
- Reviewers should be seated in front of the room for convenient access by the microphone attendants during the Q&A.
- Please mute all cell phones, BlackBerries, etc.
- Photography and audio and video recording are not permitted.

- Deadline for final review form submittal is May 20th at 5:00 PM EDT.
- ORISE personnel are available on-site for assistance. A reviewer ready room is set-up in room *They Rosslyn Room* (on the lobby level) and will be open Tuesday –Thursday from 7:30 am to 6:00 pm and Friday 7:30 am to 2:00 pm.
- Reviewers are invited to a brief feedback session – at 3:45 pm on Thursday, in this room.

For More Information

Fuel Cells Team

Dimitrios Papageorgopoulos

Fuel Cells Team Leader 202-586-3388 dimitrios.papageorgopoulos@ee.doe.gov

Nancy Garland

Catalysts, Membranes, Durability, Mass Transport, International, Impurities 202-586-5673 nancy.garland@ee.doe.gov

Kathi Epping Martin

FreedomCAR Tech Team, Stationary, Catalysts, Membranes 202-586-7425 kathi.epping@ee.doe.gov Donna Lee Ho Mass Transport, Membranes, Portable Power, APUs 202-586-8000 donna.ho@ee.doe.gov

Jason Marcinkoski

Cost Analyses, BOP, Membranes, Mass Transport, Stationary 202-586-7466 jason.marcinkoski@ee.doe.gov

Jacob Spendelow On Detail from LANL 202-586-4796 jacob.spendelow@ee.doe.gov

Jesse Adams, Greg Kleen, Dave Peterson, Katie Randolph, Reginald Tyler Golden Field Office

Acknowledgements:

Tom Benjamin, John Kopasz, Walt Podolski (ANL) Stephanie Byham (Sentech, Inc), Larry Blair (Consultant)

EERE Postdoctoral Fellowship Program

- Fuel Cell Technologies Program Opportunities Available
 - Conduct applied research at universities, national laboratories, and other research facilities
 - Up to five positions are available in the areas of hydrogen production, hydrogen delivery, hydrogen storage, and fuel cells
 - Applications are due June 30, 2011
 - Winners will be announced mid-August
 - Fellowships will begin in mid-November 2011

www.eere.energy.gov/education/postdo ctoral_fellowships/

Postdoctoral fellowships in hydrogen and fuel cell research ►

Principal Participating Organizations

• Testing and Technical Assessments

- LANL
- Directed Technologies
- TIAX
- NREL
- ANL
- ORNL
- NIST

• Balance of Plant

- W. L. Gore & Associates
- Stark State College
- Dynalene

• Bipolar Plates

- TreadStone Technologies
- ORNL
- ANL

Catalysts & Supports

- BNL
- PNNL
- 3M
- UTC
- LBNL
- ANL
- LANL
- General Motors
- Northeastern University
- University of South Carolina
- Illinois Institute of Technology
- NREL

• Durability

- -Ballard
- -LANL
- -Plug Power
- -UTC
- -ANL
- -Nuvera Fuel Cells
- -University of Connecticut

Impurities and Fuel Processors

- NREL
- University of Connecticut
- Clemson University
- University of Hawaii
- DuPont
- Rolls Royce

Membranes

- Giner Electrochemical Systems
- Oak Ridge National Laboratory
- FuelCell Energy
- University of Central Florida
- 3M
- Vanderbilt University
- Colorado School of Mines
- Case Western Reserve University
- LANL
- Sandia National Laboratory
- Ion Power
- University of Southern Mississippi
- Kettering University

Portable Power

- Arkema Inc.
- University of North Florida
- LANL
- NREL
- Stationary Power
 - Intelligent Energy
 - Acumentrics
 - Versa Power Systems
 - UTC
 - University of Akron
 - Colorado School of Mines
 - Stark State College
- Transport
 - SNL
 - LBNL
 - Nuvera Fuel Cells
 - Giner Electrochemical Systems
 - General Motors
 - Rochester IT
 - LANL
 - CFD Research Corporation

1 C