Highly Dispersed Alloy Catalyst for Durability

2011 DOE Hydrogen Program Project ID: FC002

Vivek S. Murthi

May 10, 2011

OVERVIEW

<u>Timeline</u>

- Start May 1, 2007
- End October 31, 2011
- 90% Complete

<u>Budget</u>

- Total project funding
 - DOE share \$5.878 M
 - Cost share \$2.086 M
- DOE Funding received in FY10
 - \$1.278 M
 - No cost extension in place

Barriers

Performance

Increase catalyst activity; ≥ 0.44 A/mg_{PGM}
 Cost

Reduce PGM loading; ≤ 0.3 mg _{PGM} /cm²
 Durability

- < 40% loss in ECA and Activity under potential cycling
- < 30 mV loss in performance at 1 A/cm² under carbon corrosion protocol

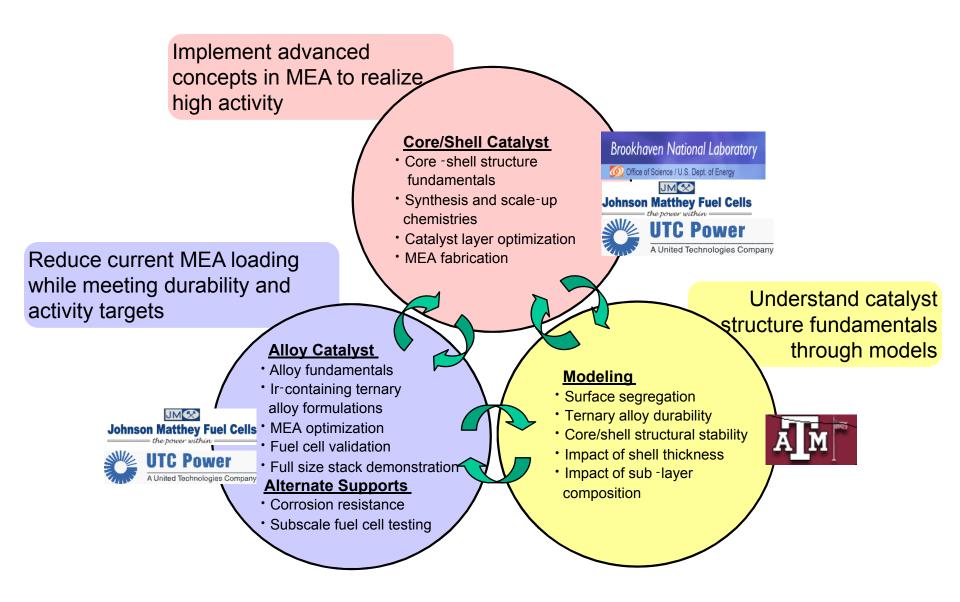
Partners

Johnson Matthey Fuel Cells

Texas A&M University

Brookhaven National Laboratory

RELEVANCE


Project Objective

Develop compositionally advanced cathode catalyst on a support that will meet DOE activity, durability and PGM loading targets in a structurally optimized MEA capable of performing at high current density.

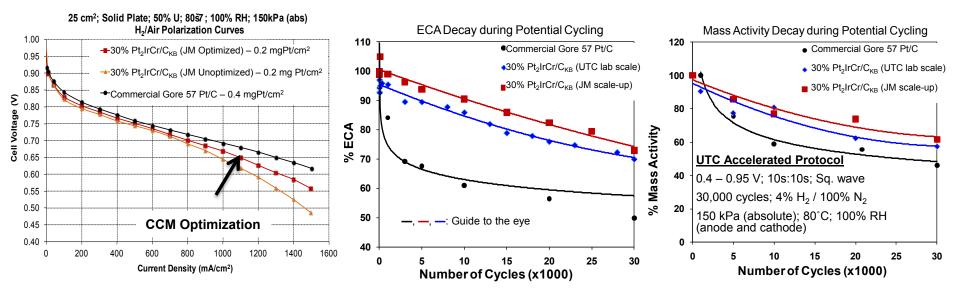
- Task 1 Dispersed Alloy Catalyst Development
 - Effect of transition metals
 - Membrane doping studies with Co and Cr ions
 - MEA optimization of 30%Pt₂IrCr/C_{KB}
 - Effect of ink formulations (I/C ratio, EW), GDL comparison
 - Load cycling in full size MEA
 - UTC vs. DOE protocol comparisons with Pt baselines
 - 30%Pt₂IrCr/C_{KB} load cycling of JM scaled-up MEA
- Task 2 Core-Shell Catalyst Development
 - ☐ Pt Electroless deposition (ELD) methods
 - Methods to improve core stability
 - Durability testing on various core-shell materials.
- Task 3 Alternative Carbon Support
 - ☐ Transfer of best alloy onto best carbon support
 - Subscale MEA Corrosion Testing

APPROACH

COLLABORATIONS

□ UTC Power (Industry):

- Dispersed alloy and core-shell catalyst synthesis, RDE activity/durability measurements and characterization
- Carbon support screening and corrosion testing
- MEA optimization to improve electrode structure for cell performance
- Sub-scale, single cell and stack testing
- ☐ Johnson Matthey Fuel Cells (Industry):
 - Catalyst scale-up synthesis (dispersed and core-shell systems)
 - MEA optimization to improve electrode structure
- ☐ Brookhaven National Lab (Federal):
 - Investigate the activity and stability of novel core-shell catalyst systems
 - Synchrotron in-situ EXAFS and TEM-EELS to understand the surface characteristics of dispersed alloy and core-shell systems validating the modeling results
- ☐ Texas A&M University (Academia):
 - Computational calculations to understand activity and stability benefits of dispersed alloy and core-shell catalysts in terms of their activity for O₂ reduction reaction and stability against dissolution

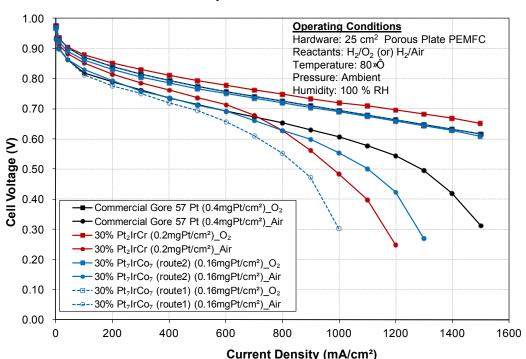


APPROACH

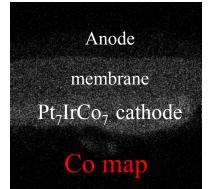
Milestones and Accomplishments

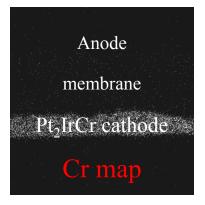
Month/Year	Milestone or Go/No-Go Decision	Status/Comments	
April 2010	Milestone: Completion of all modeling work and publication of results	Task Complete	
June 2010	Milestone: Scale-up of alloy catalyst on durable carbon support and subscale MEA testing	Scale-up complete; Sub-scale corrosion test by January 2011; MEA optimization in-progress	
June 2010	Milestone: Scale-up of 30% Pt ₂ IrCr on KB	Complete	
November 2010	Go/No-Go decision: Down-selection and MEA optimization of core-shell catalysts for single cell durability test	No-Go Decision; Investigating alternate core-shell synthesis methods	
December 2010	Milestone: Single cell validation of dispersed alloy catalysts	Complete	
April 2011	Stack Demonstration	BOL complete; Durability testing currently underway	
October 2011	MEA optimization of 20% Pt ₂ IrCr/C4 and single cell durability test	On Track	

2008 - 2010: Formulation, Scale-up and Optimization



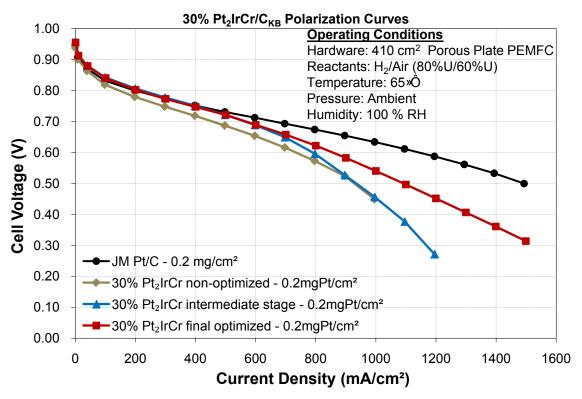
- □ 30% Pt₂IrCr /C_{KB} has best durability among studied alloys in both RDE and MEA cycling
- ☐ Clear evidence of improvement for high current density performance in H₂/Air from preliminary catalyst layer optimization steps
- □ Half-loading (0.2mg_{Pt}/cm²) alloy catalyst MEA's can achieve comparable initial performances to a standard Gore 57 (0.4mg_{Pt}/cm²)
- ☐ Down-selected stable carbon C4: Carbon that meets DOE Target
 - C4 showed significant corrosion stability
 - No performance loss until 300 hours of 1.2 V holds (13 cycles)
 - After 17 cycles (408 hours) Pt₈IrCo₂/C4 shows only 12 mV loss at 1.5 A/cm² in O₂




Task 1: Pt₂IrCr/C_{KB} vs. Pt₇IrCo₇/C_{KB}

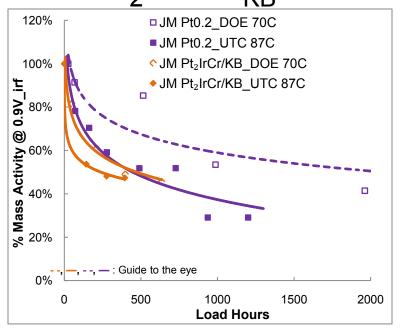
- □ 30% Pt₂IrCr/C_{KB} shows higher kinetic performance than other developed alloys
- ☐ Mass transport can be improved with MEA optimization
- ☐ 30% Pt₂IrCr/C_{KB} was down-selected for further MEA optimization

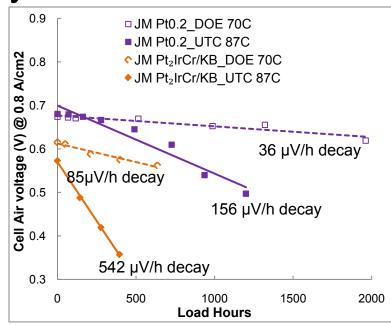
- ☐ Lower Stability of Co than Cr in acidic environments
 - 45-75% Co and 25% Cr loss from catalysts in 1M H₂SO₄
 - 48% Co and 15% Cr loss from catalysts into ink solvent/Nafion
 - Cr or Co ions in MEAs have detrimental impact on cell performance
 - Lower stability of Co than Cr in fresh MEAs (stored more than 90 days)



EMPA elemental map of fresh MEAs after ~90 days

Task 1: Pt₂IrCr/C_{KB} Single-Cell MEA Optimization

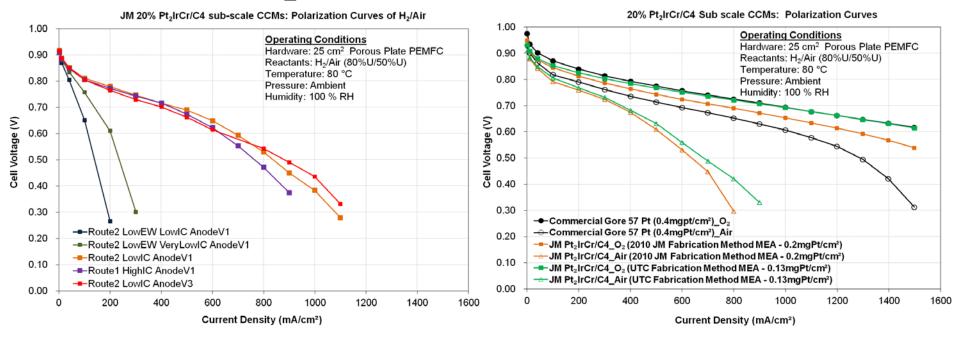



☐ Performance optimizations in full-scale single cells

- Improved electrode structure (ink formulation, I/C ratio, Nafion® EW) and GDL (hydrophobicity)
- Increased catalyst utilization from 26 to 42 m²/g_{Pt}
- Higher mass activity from 0.11 to 0.2 A/mg_{Pt}
- Reduced mass transport resistance by 91 mV @ 1 A/cm²
- A performance gap of 94 mV vs. baseline Pt/C (0.2 mg/cm²) @ 1 A/cm²

Task 1: Pt₂IrCr/C_{KB} Durability in Full-Size MEA

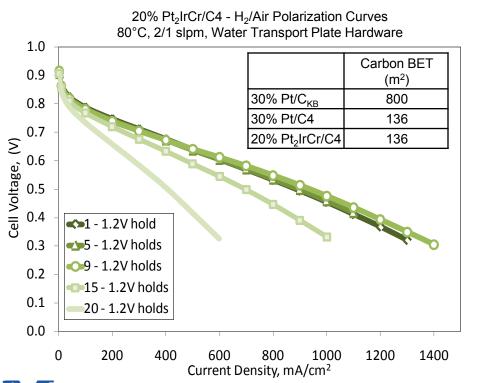
Durability protocol

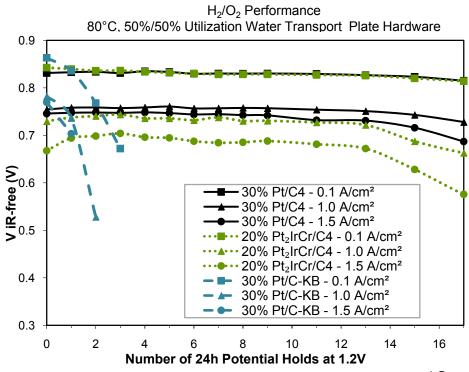

- Modified DOE protocol: ~33-100 %RH cycle, 20-100 mA/cm² (dry) & 20-1000 mA/cm² (wet) load cycle, average 70 °C, ambient pressure
- UTC protocol: current cycles up to 800 mA/cm², average 87 °C, ambient pressure

\Box Pt₂IrCr/C_{KB} vs. Pure Pt durability

- Higher rate of mass activity and high-current density performance loss for Pt-alloy than pure Pt
- Mass activity of Pt and Pt-alloy reaches the same value after decay
- Degradation rates increased with temperature in both Pt and Pt-alloys
- Cr loss into MEA (leads to increase in cell resistance and oxygen gain)

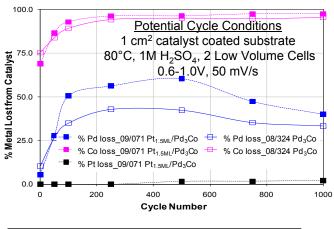
Task 3: 20% Pt₂IrCr/C4 Sub-Scale MEA Optimization


☐ Performance optimizations in sub-scale WTP cells


- Improve electrode structure of cathode based on ink formulation, I/C, Nafion[®] EW, cathode GDL (hydrophobicity) and anode versions
- Improved mass activity compared to the Pt/C4 catalyst
- A large air performance gap observed compared to Pt/C_{KB} and Pt/C4 systems (0.2 mg/cm²) at high current densities
- Preliminary MEA fabrication at UTC shows that opportunities exist for further performance improvement at UTC – main focus in 2011

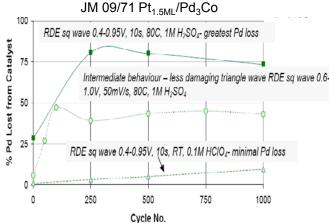
Task 3: Pt₂IrCr/C4 Corrosion Testing in WTP

- Scaled-up 20% Pt₂IrCr/C4 has lower performance due to low loading and non-optimized MEA
- Performance for C4 begins to decay only after 300h
- There is no thinning of catalyst layers for C4 after 408h
- Limited activity decay during testing
 - This catalyst and carbon combination is kinetically stable
 - MEA optimization to improve high current density performance (Main focus in 2011)



A Unite

12


CORE-SHELL ELD METHOD

Activities Leading to No-Go Decision

Pd₃Co and Pd₃Fe cores identified from modeling to have ~5xPt MA

Multiple Core preparation methods, Pt coating & Characterization

No-Go Pd₃Cr shows Pd dissolution

Pd plates onto Pt surface during cycling if above a certain Pd²⁺ concentration

Activity in MEA<<RDE

 LEIS and voltammetry identified Co on surface

 Stability and activity of Pd₃Co = Pd₃Fe

 Significant Pd dissolution in liquid cell @ 80°C, 1M H₂SO₄, 0.6-1.0V cycles No-Go on Pt_{ML}/Pd₃Fe due to concern for Fe leaching in MEA

Pt_{ML}/Ir core has small MA benefit

No-Go Pd dissolution observed under multiple test protocols for UPD lab scale and scale-up catalysts

Non-uniform shell thickness for scaleup catalysts; varies between 0 – 2 ML No benefit from acid leaching Pd₃Co cores before Pt deposition results

No-Go Pd loss observed for Pd and Ir ion washed Pd₃X cores

 Pt_{ML}/Ir has good stability and no MEA to RDE gap

No-Go on Pt_{ML}/Ir core due to low cost benefit and limited Ir resources

CURRENT TECHNICAL STATUS

Electrocatalyst Targets	Previous Status	Current Status	DOE 2010 Target	DOE 2015 Target
Pt group metal (total content) [g/kW]	0.50	0.50	0.3	0.2
Pt group metal (total loading) [mg/cm²]	0.40 ^h	0.40§	0.3	0.2
Mass activity @ 900mV [A/mg _{PGM}]	0.14	0.20	0.44	0.44
Specific activity @ 900mV [mA/cm²]	0.50	0.94	0.72	0.72
Cyclic durability @ <80°C / >80°C [h]	N/A	400	5000/2000	5000
ECA Loss* [%]	30	30	<40	<40
Cost [\$/kW]	~26 [†]	~26 [†]	5	3
Carbon Support Durability iR free O ₂ performance loss at 1.5 A/cm ² after 400h at 1.2 V [mV]	59	92‡	<30	<30

^{*} Durability data measured after 30K cycles on UTC defined accelerated test protocol

- ☐ 30% Pt₂IrCr/C_{KB} Stack durability demonstration in progress
- □ Scaled-up a 200g batch of 20%Pt₂IrCr/C4; MEA optimization activities in progress
- □ No-Go decision for core-shell catalysts (JM fabrication method)

^{†5} year average PGM price \$51.55/g (Pt = \$1234.33/Troy Oz; Ir = \$369.06/troy oz); costs not projected to high volume

[§] Based on current scaled-up 30% Pt₂IrCr MEA; Anode/Cathode loading – 0.1/0.3 mg/cm² (PGM)

[‡]40 mV iR free O₂ performance loss at 1.5 A/cm² after 360 hours at 1.2 V

FUTURE WORK

Task 1: Dispersed Catalyst Work

Short stack durability testing of 30% Pt₂IrCr/C_{KB}

Task 2: Core-Shell Catalyst Development

- Investigate alternate core-shell synthesis methods
- Subscale performance of core-shell catalyst

Task 3: Stable Carbon Support

- MEA optimization for 20% Pt₂IrCr/C4 "best catalyst on best carbon support"
 - Ink formulation and processing methods
 - Thin and durable membrane down-selection
 - Cathode Ionomer selection, EW and I/C ratio
 - Cathode and Anode GDL development for high performance
- Durability testing of optimized MEA

PROJECT SUMMARY

Relevance: Develop structurally and compositionally advanced cathode catalyst layers that

will meet DOE targets for performance and durability in real-life conditions in an

MEA and 20-cell stack tests.

Approach: Complete fundamental modeling, experimental studies that elucidate the

structure of a catalyst after synthesis, their stability during processing and fuel

cell operation.

Technical Accomplishments and Progress:

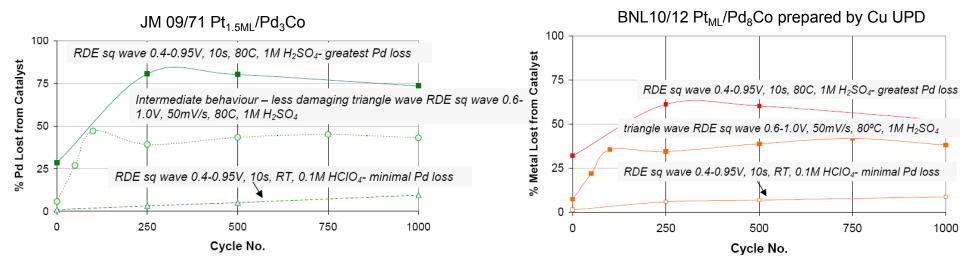
(1) Completed full-size MEA optimization of 30% Pt_2IrCr/C_{KB} along with full size durability testing and a 20-cell stack performance demonstration.

(2) Decided the current core-shell method was a No-Go after extensive physical characterization and stability testing of various core-shell materials

(3) Successfully deposited our best catalyst onto our most durable carbon support.

Technology Transfer/Collaborations: Active partnerships with JMFC, BNL and Texas A&M to develop a more active and durable cathode catalyst layer. Technology transfer through team meetings, presentations and publications.

<u>Proposed Future Research:</u> Focus will be on further improving MEA performance for the best alloy on our most durable support while wrapping up the program with durability testing in both a short full-size MEA stack and the fully optimized single cell MEA.



Technical Back-up Slides

CORE-SHELL ELD METHOD

Pd loss due to temperature, electrolyte or cycle regime

- Stability of JM 09/71 Pt_{1.5ML}/Pd₃Co and BNL 10/12 Pt_{ML}/Pd₈Co tested under 3 different cycling regimes show similar behavior
- Higher temperature and more concentrated electrolyte contribute to Pd dissolution substantially more damaging than room temperature RDE testing
- Explains low performance in MEAs vs RDE
- "Cation-wash" procedure for improving the stability of core-shell nanoparticle catalysts unsuccessful
- Task 3: Core/shell catalyst No-Go Decision for Single-cell/Stack testing

