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OVERVIEW

• Start – May 1, 2007
• End – October 31, 2011
• 90% Complete 

Performance
• Increase catalyst activity; ≥ 0.44 A/mgPGM

Cost 
• Reduce PGM loading; ≤ 0.3 mg PGM /cm2

Durability
• < 40% loss in ECA and Activity under 

potential cycling
• < 30 mV loss in performance at 1 A/cm2

under carbon corrosion protocol

• Total project funding
– DOE share - $5.878 M
– Cost share - $2.086 M

• DOE Funding received in FY10
– $1.278 M
– No cost extension in place

Timeline

Budget

Barriers

Johnson Matthey Fuel Cells

Texas A&M University

Brookhaven National Laboratory

Partners
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Task 1 – Dispersed Alloy Catalyst Development
 Effect of transition metals 

• Membrane doping studies with Co and Cr ions
 MEA optimization of 30%Pt2IrCr/CKB

• Effect of ink formulations (I/C ratio, EW), GDL comparison 
 Load cycling in full size MEA

• UTC vs. DOE protocol comparisons with Pt baselines
• 30%Pt2IrCr/CKB load cycling of JM scaled-up MEA

Task 2 – Core-Shell Catalyst Development
 Pt Electroless deposition (ELD) methods
 Methods to improve core stability
 Durability testing on various core-shell materials. 

Task 3 – Alternative Carbon Support
 Transfer of best alloy onto best carbon support
 Subscale MEA Corrosion Testing

RELEVANCE
Project Objective
Develop compositionally advanced cathode catalyst on a support that will 
meet DOE activity, durability and PGM loading targets in a structurally 
optimized MEA capable of performing at high current density.



4

Understand catalyst 
structure fundamentals 

through models 

Implement advanced 
concepts in MEA to realize 
high activity

Reduce current MEA loading 
while meeting durability and 
activity targets

APPROACH

Core/Shell Catalyst
• Core -shell structure 

fundamentals
• Synthesis and scale-up
chemistries

• Catalyst layer optimization 
• MEA fabrication

Modeling
• Surface segregation 
• Ternary alloy durability
• Core/shell structural stability
• Impact of shell thickness
• Impact of sub -layer
composition

Alloy Catalyst
• Alloy fundamentals
• Ir-containing ternary
alloy formulations

• MEA optimization
• Fuel cell validation
• Full size stack demonstration
Alternate Supports

• Corrosion resistance
• Subscale fuel cell testing
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UTC Power (Industry):
 Dispersed alloy and core-shell catalyst synthesis, RDE activity/durability measurements

and characterization
 Carbon support screening and corrosion testing
 MEA optimization to improve electrode structure for cell performance
 Sub-scale, single cell and stack testing

Johnson – Matthey Fuel Cells (Industry):
 Catalyst scale-up synthesis (dispersed and core-shell systems)
 MEA optimization to improve electrode structure

Brookhaven National Lab (Federal):
 Investigate the activity and stability of novel core-shell catalyst systems
 Synchrotron in-situ EXAFS and TEM-EELS to understand the surface characteristics of

dispersed alloy and core-shell systems validating the modeling results
Texas A&M University (Academia):
 Computational calculations to understand activity and stability benefits of dispersed

alloy and core-shell catalysts in terms of their activity for O2 reduction reaction and
stability against dissolution

COLLABORATIONS
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APPROACH
Milestones and Accomplishments

Month/Year Milestone or
Go/No-Go Decision Status/Comments

April 2010
Milestone: Completion of all 
modeling work and publication of 
results

Task Complete

June 2010
Milestone: Scale-up of alloy catalyst 
on durable carbon support and sub-
scale MEA testing

Scale-up complete; Sub-scale corrosion 
test by January 2011; 
MEA optimization in-progress 

June 2010 Milestone: Scale-up of 30% Pt2IrCr 
on KB Complete

November 2010
Go/No-Go decision: Down-selection 
and MEA optimization of core-shell 
catalysts for single cell durability test

No-Go Decision; Investigating alternate 
core-shell synthesis methods

December  2010 Milestone: Single cell validation of
dispersed alloy catalysts Complete

April 2011 Stack Demonstration BOL complete; Durability testing currently 
underway

October 2011 MEA optimization of 20% Pt2IrCr/C4 
and single cell durability test On Track
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JM Pt2IrCr (JM Optimized)

JM Pt2IrCr (JM Unoptimized)

Commercial gore 57 Pt/C - 0.4 mgPt/cm2

25 cm2; Solid Plate; 50% U; 80ÁC; 100% RH; 150kPa (abs) 
H2/Air Polarization Curves

CCM Optimization

30% Pt2IrCr/CKB (JM Optimized) – 0.2 mgPt/cm2

30% Pt2IrCr/CKB (JM Unoptimized) – 0.2 mg Pt/cm2

Commercial Gore 57 Pt/C – 0.4 mgPt/cm2

 30% Pt2IrCr /CKB has best durability among studied alloys in both RDE and MEA cycling
 Clear evidence of improvement for high current density performance in H2/Air from 

preliminary catalyst layer optimization steps 
 Half-loading (0.2mgPt/cm2) alloy catalyst MEA’s can achieve comparable initial performances 

to a standard Gore 57 (0.4mgPt/cm2)
 Down-selected stable carbon C4: Carbon that meets DOE Target

 C4 showed significant corrosion stability
 No performance loss until 300 hours of 1.2 V holds (13 cycles)
 After 17 cycles (408 hours) Pt8IrCo2/C4 shows only 12 mV loss at 1.5 A/cm2 in O2

TECHNICAL  ACCOMPLISHMENTS
2008 - 2010: Formulation, Scale-up and Optimization
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—, —, —: Guide to the eye

Commercial Gore 57 Pt/C

30% Pt2IrCr/CKB (UTC lab scale)

30% Pt2IrCr/CKB (JM scale-up)
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Mass Activity Decay during Potential Cycling
Gore5710 Pt/C (09-69)

DOE52 Pt2IrCr/C (08-77)

JM 09-081 Pt2IrCr/C (09-94)

UTC Accelerated Protocol
0.4 – 0.95 V; 10s:10s; Sq. wave
30,000 cycles; 4% H2 / 100% N2

150 kPa (absolute); 80˚C; 100% RH 
(anode and cathode)

Commercial Gore 57 Pt/C

30% Pt2IrCr/CKB (UTC lab scale)

30% Pt2IrCr/CKB (JM scale-up)
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TECHNICAL ACCOMPLISHMENTS
Task 1: Pt2IrCr/CKB vs. Pt7IrCo7/CKB

 30% Pt2IrCr/CKB shows higher kinetic 
performance than other developed alloys
 Mass transport can be improved with 
MEA optimization
 30% Pt2IrCr/CKB was down-selected 
for further MEA optimization

 Lower Stability of Co than Cr in acidic 
environments

 45-75% Co and 25% Cr loss from catalysts in 
1M H2SO4
 48% Co and 15% Cr loss from catalysts into 

ink solvent/Nafion
Cr or Co ions in MEAs have detrimental 

impact on cell performance
 Lower stability of Co than Cr in fresh MEAs 

(stored more than 90 days)

Co map Cr map

Pt7IrCo7  cathode Pt2IrCr cathode

membrane membrane

AnodeAnode
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Commercial Gore 57 Pt (0.4mgPt/cm²)_O₂
Commercial Gore 57 Pt (0.4mgPt/cm²)_Air
30% Pt₂IrCr (0.2mgPt/cm²)_O₂
30% Pt₂IrCr (0.2mgPt/cm²)_Air
30% Pt₇IrCo₇ (route2) (0.16mgPt/cm²)_O₂
30% Pt₇IrCo₇ (route2) (0.16mgPt/cm²)_Air
30% Pt₇IrCo₇ (route1) (0.16mgPt/cm²)_O₂
30% Pt₇IrCo₇ (route1) (0.16mgPt/cm²)_Air

Operating Conditions
Hardware: 25 cm2 Porous Plate PEMFC
Reactants: H2/O2 (or) H2/Air 
Temperature: 80ÁC
Pressure: Ambient
Humidity: 100 % RH

EMPA elemental map 
of fresh MEAs after ~90 days 
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TECHNICAL ACCOMPLISHMENTS
Task 1: Pt2IrCr/CKB Single-Cell MEA Optimization

 Performance optimizations in full-scale single cells
 Improved electrode structure (ink formulation, I/C ratio, Nafion® EW) and GDL (hydrophobicity)
 Increased catalyst utilization from 26 to 42 m2/gPt
 Higher mass activity from 0.11 to 0.2 A/mgPt
 Reduced mass transport resistance by 91 mV @ 1 A/cm2

 A performance gap of 94 mV vs. baseline Pt/C (0.2 mg/cm2) @ 1 A/cm2
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30% Pt2IrCr/CKB Polarization Curves 

JM Pt/C - 0.2 mg/cm²
30% Pt₂IrCr non-optimized - 0.2mgPt/cm²
30% Pt₂IrCr intermediate stage - 0.2mgPt/cm²
30% Pt₂IrCr final optimized - 0.2mgPt/cm²

Operating Conditions
Hardware: 410 cm2 Porous Plate PEMFC
Reactants: H2/Air (80%U/60%U)
Temperature: 65ÁC
Pressure: Ambient
Humidity: 100 % RH
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TECHNICAL ACCOMPLISHMENTS
Task 1: Pt2IrCr/CKB Durability in Full-Size MEA

Durability protocol 
 Modified DOE protocol: ~33-100 %RH cycle, 20-100 mA/cm2 (dry) & 20-1000 mA/cm2 (wet) load 

cycle, average 70 ºC,  ambient pressure
 UTC protocol: current cycles up to 800 mA/cm2, average 87 ºC,  ambient pressure

 Pt2IrCr/CKB vs. Pure Pt durability
 Higher rate of mass activity and high-current density performance loss for Pt-alloy than pure Pt
 Mass activity of Pt and Pt-alloy reaches the same value after decay
 Degradation rates increased with temperature in both Pt and Pt-alloys
 Cr loss into MEA (leads to increase in cell resistance and oxygen gain) 

85μV/h decay

36 μV/h decay

156 μV/h decay

542 μV/h decay- -, —,  -, — : Guide to the eye
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TECHNICAL ACCOMPLISHMENTS
Task 3: 20% Pt2IrCr/C4 Sub-Scale MEA Optimization

 Performance optimizations in sub-scale WTP cells
 Improve electrode structure of cathode based on ink formulation, I/C, Nafion® EW, cathode GDL 

(hydrophobicity) and anode versions
 Improved mass activity compared to the Pt/C4 catalyst
 A large air performance gap observed compared to Pt/CKB and Pt/C4 systems (0.2 mg/cm2) at high 

current densities
 Preliminary MEA fabrication at UTC shows that opportunities exist for further performance 

improvement at UTC – main focus in 2011



12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 200 400 600 800 1000 1200 1400

Ce
ll 

Vo
lt

ag
e,

  (
V

) 

Current Density, mA/cm2

1 - 1.2V hold
5 - 1.2V holds
9 - 1.2V holds
15 - 1.2V holds
20 - 1.2V holds

TECHNICAL ACCOMPLISHMENTS
Task 3: Pt2IrCr/C4 Corrosion Testing in WTP

• Scaled-up 20% Pt2IrCr/C4 has lower performance due to low loading and non-optimized MEA
• Performance for C4 begins to decay only after 300h 
• There is no thinning of catalyst layers for C4 after 408h
• Limited activity decay during testing 

– This catalyst and carbon combination is kinetically stable
– MEA optimization to improve high current density performance (Main focus in 2011)

20% Pt2IrCr/C4 - H2/Air Polarization Curves 
80°C, 2/1 slpm, Water Transport Plate Hardware

H2/O2 Performance 
80°C, 50%/50% Utilization Water Transport  Plate Hardware

Cathode MEA Loadings:
30%Pt/CKB = 0.2 mgPt/cm2

30%Pt/C4 = 0.2 mgPt/cm2

20%Pt2IrCr/C4 = 0.13 mgPt/cm2

Carbon BET
(m2)

30% Pt/CKB 800
30% Pt/C4 136
20% Pt2IrCr/C4 136
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30% Pt/C4 - 0.1 A/cm²
30% Pt/C4 - 1.0 A/cm²
30% Pt/C4 - 1.5 A/cm²
20% Pt₂IrCr/C4 - 0.1 A/cm²
20% Pt₂IrCr/C4 - 1.0 A/cm²
20% Pt₂IrCr/C4 - 1.5 A/cm²
30% Pt/C-KB - 0.1 A/cm²
30% Pt/C-KB - 1.0 A/cm²
30% Pt/C-KB - 1.5 A/cm²
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Potential Cycle Conditions 
1 cm2 catalyst coated substrate

80°C, 1M H2SO4, 2 Low Volume Cells
0.6-1.0V, 50 mV/s 

 
 

 

 
% Pd loss_09/71 Pt1.5ML/Pd3Co % Pd loss_08/324 Pd3Co
% Co loss_09/71 Pt1.5ML/Pd3Co % Co loss_08/324 Pd3Co
% Pt loss_09/71 Pt1.5ML/Pd3Co

% Pd loss_09/071 Pt1.5ML/Pd3Co
% Co loss_09/071 Pt1.5ML/Pd3Co
% Pt loss_09/071 Pt1.5ML/Pd3Co

% Pd loss_08/324 Pd3Co
% Co loss_08/324 Pd3Co

No-Go Pd loss observed for Pd and Ir
ion washed Pd3X cores

No-Go Pd dissolution observed under 
multiple test protocols for UPD lab 

scale and scale-up catalysts

Pd plates onto Pt surface during 
cycling if above a certain Pd2+

concentration 

CORE-SHELL ELD METHOD
Activities Leading to No-Go Decision

Multiple Core preparation methods,   
Pt coating & Characterization

No benefit from acid leaching Pd3Co 
cores before Pt deposition results

No-Go on PtML/Pd3Fe due to concern 
for Fe leaching in MEA

No-Go on PtML/Ir core due to low cost 
benefit and limited Ir resources

No-Go Pd3Cr shows Pd dissolution

PtML/Ir has good stability and no MEA 
to RDE gap

• Activity in MEA<<RDE
• LEIS and voltammetry identified 

Co on surface
• Stability and activity of Pd3Co = 

Pd3Fe 
• Significant Pd dissolution in liquid 

cell @ 80°C, 1M H2SO4, 0.6-1.0V 
cycles

Pd3Co and Pd3Fe cores identified 
from modeling to have ~5xPt MA

PtML/Ir core has small MA benefit

Non-uniform shell thickness for scale-
up catalysts; varies between 0 – 2 ML

JM 09/71 Pt1.5ML/Pd3Co
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CURRENT TECHNICAL STATUS
Electrocatalyst Targets Previous  Status Current Status DOE 2010 

Target
DOE 2015

Target

Pt group metal (total content) [g/kW] 0.50 0.50 0.3 0.2

Pt group metal (total loading) [mg/cm2] 0.40Ä 0.3 0.2

Mass activity @ 900mV [A/mgPGM] 0.14 0.20 0.44 0.44

Specific activity @ 900mV [mA/cm2] 0.50 0.94 0.72 0.72

Cyclic durability @ <80°C / >80°C [h] N/A 400 5000/2000 5000

ECA Loss* [%] 30 30 <40 <40

Cost [$/kW] ~26† ~26† 5 3

Carbon Support Durability 
iR free O2 performance loss at 1.5 A/cm2

after 400h at 1.2 V [mV]
59 92‡ <30 <30

* Durability data measured after 30K cycles on UTC defined accelerated test protocol
† 5 year average PGM price $ 51.55/g (Pt = $1234.33/Troy Oz; Ir = $ 369.06/troy oz); costs not projected to high volume 

Based on current scaled-up 30% Pt2IrCr MEA ; Anode/Cathode loading – 0.1/0.3 mg/cm2 (PGM)
‡ 40 mV iR free O2 performance loss at 1.5 A/cm2 after 360 hours at 1.2 V

 30% Pt2IrCr/CKB – Stack durability demonstration in progress
 Scaled-up a 200g batch of 20%Pt2IrCr/C4; MEA optimization activities in progress
 No-Go decision for core-shell catalysts (JM fabrication method)

0.40§

§
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Task 1: Dispersed Catalyst Work
o Short stack durability testing of 30% Pt2IrCr/CKB

Task 2: Core-Shell Catalyst Development
o Investigate alternate core-shell synthesis methods
o Subscale performance of core-shell catalyst 

Task 3: Stable Carbon Support
o MEA optimization for 20% Pt2IrCr/C4 “best catalyst on best carbon support”

• Ink formulation and processing methods
• Thin and durable membrane down-selection
• Cathode Ionomer selection, EW and I/C ratio
• Cathode and Anode GDL  development for high performance

o Durability testing of optimized MEA 

FUTURE WORK
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Relevance: Develop structurally and compositionally advanced cathode catalyst layers that 
will meet DOE targets for performance and durability in real-life conditions in an 
MEA and 20-cell stack tests.

Approach: Complete fundamental modeling, experimental studies that elucidate the 
structure of a catalyst after synthesis, their stability during processing and fuel 
cell operation. 

Technical Accomplishments and Progress:
(1) Completed full-size MEA optimization of 30% Pt2IrCr/CKB along with full size 
durability testing and a 20-cell stack performance demonstration. 
(2) Decided the current core-shell method was a No-Go after extensive physical 
characterization and stability testing of various core-shell materials
(3) Successfully deposited our best catalyst onto our most durable carbon 
support.

Technology Transfer/Collaborations: Active partnerships with JMFC, BNL and Texas A&M 
to develop a more active and durable cathode catalyst layer. Technology 
transfer through team meetings, presentations and publications. 

Proposed Future Research: Focus will be on further improving MEA performance for the best 
alloy on our most durable support while wrapping up the program with durability 
testing in both a short full-size MEA stack and the fully optimized single cell MEA. 

PROJECT SUMMARY
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Technical Back-up Slides
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CORE-SHELL ELD METHOD
Pd loss  due to temperature, electrolyte or cycle regime

 Stability of JM 09/71 Pt1.5ML/Pd3Co and BNL 10/12 PtML/Pd8Co tested under 3 different 
cycling regimes show similar behavior

 Higher temperature and more concentrated electrolyte contribute to Pd dissolution –
substantially more damaging than room temperature RDE testing

 Explains low performance in MEAs vs RDE
 “Cation-wash” procedure for improving the stability of core-shell nanoparticle catalysts -

unsuccessful

 Task 3: Core/shell catalyst – No-Go Decision for Single-cell/Stack testing

JM 09/71 Pt1.5ML/Pd3Co BNL10/12 PtML/Pd8Co prepared by Cu UPD
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