

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

2011 DOE Hydrogen and Fuel Cells Program Review

Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading

Announcement No: DE-PS36-08GO98010 Topic: 1A

PI: Nenad M. MarkovicCo-PI: Vojislav R. Stamenkovic

Materials Science Division

Argonne National Laboratory

Project ID# FC008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project start: 9/2009
- Project end: 9/2012

Budget

- Total Project funding \$3.6M
 - DOE share: 80 %
 - Contractor share: 20%
- Received in FY09: \$ 300K
- Funding for FY10: \$1.2M
- Funding for FY11: \$ 1.2M

Partners:

- Oak Ridge National Laboratory Karren More
- Jet Propulsion Laboratory C. Hays
- Brown University Shouheng Sun
- University of Pittsburgh Goufeng Wang
- 3M Company Radoslav Atanasoski
 <u>Project Lead:</u>
- Argonne National Laboratory

Relevance

<u>Objectives</u> The main focus of ongoing DOE Fuel Cell Hydrogen Program is related to the ORR evaluation on PtM bimetallic and PtM_1M_2 (M_1 =Co,Ni; M_2 =Fe, Mn, Cr, V, Ti etc) ternary systems that will lead to the development of highly-efficient and durable *real-world nanosegregated Pt-skin catalysts with low-Pt content*

DOE Technical Targets

- Specific activity @0.9V_{iR-free}: 720 μA/cm²
- Mass activity @0.9V: 0.44 A/mg_{Pt}
- Electrochemical area loss: < 40%
- Catalyst support loss: < 30%
- PGM Total content: 0.2 g/kW
- PGM Total loading: 0.2 mg/cm²_{electrode}
- Cost*: \$ 30/kW_e
- Durability w/cycling (80°C): 5000 hrs *based on Pt cost of \$450/troy ounce

ANL Technical Targets

- Specific activity @ 0.9V_{iR-free} 2015 DOE target x 3
- Mass activity @ 0.9V_{iR-free} 2015 DOE target x 3
- Electrochemical area loss
 2015 DOE target
- PGM Total content < 0.1g/kW

Materials-by-design approach - developed by ANL to design, characterize, understand, synthesize/fabricate and test advanced nanosegregated multi-metallic nanoparticles and nanostructured thin metal films

Approach / Milestone

(Go-No Go Decision Met)

<u>Milesto</u>	ne 1. Composition – function relationship (FY11)	(Accomp	lished)
1.1	Resolved electronic/atomic structure and segregation profile	(50%	6)
1.2	Confirmed reaction mechanism of the ORR	(40%	ó)
1.3	Improved specific and mass activity	(50%	»)
<u>Milesto</u>	ne 2. Synthesis and characterization (FY11)		
2.1	Physical methods: TM films (5-10 layers), nanoparticles (5-30)0 nm) ((50%)
2.2	Established chemical methods: colloidal and impregnation sy	nthesis	(40%)
2.3	Characterization: Ex-situ (UHV, TEM) and in-situ (EXAFS, EC	C) ((40%)
2.4	Theoretical modeling (DFT, MC) methods		(50%)
Milestone 3. Fabrication and testing (FY11)			
3.1	New PtM ₁ M ₂ catalysts with higher activity and improved dura	bility	(40%)
3.2	Carbon support vs. nanostructured thin film catalysts		(30%)
3.3	MEA testing (50 cm ²) of the optimized catalysts		(15%)
3.4	Scale up of the catalyst fabrication in lab environment		(15%)

Relevant Prior Work

Nanosegregated particles should be the best catalysts for the ORR

maximize activity by minimizing surface coverage of spectators

Guiding principles:

without compromising activity protect 3d elements by additional Pt layer

Technical Accomplishments FY09, FY10: Bimetallic Nanocatalysts

Colloidal solvo - thermal approach has been developed for monodispersed PtM NPs with controlled size and composition

Efficient surfactant removal method does not change the catalyst properties

1º Particle size effect applies to Pt-bimetallic NPs

Specific Activity increases with particle size: 3 < 4.5 < 6 < 9nm

Mass Activity decreases with particle size

Optimal size particle size ~5nm

2º Temperature induced segregation in Pt-bimetallic NPs

Optimized annealing temperature 400-500°C

<u>3º Surface chemistry of homogeneous Pt-bimetallic NPs</u>

Dissolution of non Pt surface atoms leads to Pt-skeleton formation

4º Composition effect in Pt-bimetallic NPs

Optimal composition of Pt-bimetallic NPs is PtM

Technical Accomplishments: Optimization of Pt-skeleton thickness

Thin Pt bi/multi metallic film studies: Physical vapor deposition over the substrates with adjustable compositions

Technical Accomplishments: Fine Tuning of PtM catalytic properties

RDE: PtNi NPs with multilayered skin have ~x6 higher specific and mass activities than Pt/C after 20K cycles (0.6 - 1.05V)

Technical Accomplishments: RDE and MEA Testing of PtNi NPs

General Motors R & D Electrochemical Energy Research Lab

RDE

0.1M HCIO₄, 60°C, @ 0.90V, 1600 rpm, 20 mV/s, w/o ionomer w/o iR compensation **RDE:** PtNi/C NPs with multilayered skin have ~10 times specific ~4 times mass activities of Pt/C catalyst in the initial cycle SA~2 mA/cm²_{Pt}, MA~0.8 A/mg_{Pt}

RDE: Specific activity drops from sweep to sweep by 20% Lower values for SA are obtained for sweep rate of 5 mV/s ~ 1.2 mA/cm²_{Pt}

RDE: Specific activity was recovered to initial value of ~2mA/cm²_{Pt}

Deactivation due to degradation of the catalyst was ruled out, and it depends on the presence of spectator/blocking species (ions, oxides, impurities)

50 cm², 25 μ DuPont NRE membrane, 80°C, 32% RH, 150kPa_{abs}, @ 0.90V, H₂ - Air 20K cycles from 0.6-0.925V MEA: PtNi/C NPs with multilayered skin have ~3 times higher specific and mass activities than benchmark Pt/C catalyst: SA~0.8mA/cm²_{Pt}, MA~0.35A/mg_{Pt}

MEA: After 20K cycles activity loss was only 12% (~ 0.7 mA/cm²_{Pt}), while commercially available Pt/C and PtM/C catalysts suffer loss of 20-50%

MEA/EXAFS: Before and after 20K cycles in MEA Pt-Pt and Pt-Ni distances remain stable indicating no change in catalyst morphology

PtNi/C is highly durable catalyst, which meets DOE 2015 targets for specific activities and exceeds anticipated targets for stability

Technical Accomplishments: Synthesis of Pt Ternary Alloy NPs

Synthesis of homogeneous and monodisperse ternary alloy nanoparticles has been accomplished

Technical Accomplishments: Characterization of Pt₃FeCo NPs

TEM: uniform particle size distribution. The average particle size is about 6 nm

HAADF-STEM elemental mapping: homogeneous distribution of alloying elements

Technical Accomplishments: Characterization of Pt₃FeNi NPs

TEM: Less uniform particle size distribution. The particle size is about 2-7 nm

HAADF-STEM elemental mapping: Homogeneous distribution of alloying elements

Technical Accomplishments: Characterization of Pt₃CoNi NPs

HAADF-STEM elemental mapping: homogeneous distribution of alloying elements

Technical Accomplishments: ORR Activity of Pt Ternary Alloy NPs

ORR Activity Trend: Pt< Pt₃Fe < Pt₃Ni < Pt₃FeCo < Pt₃FeNi < Pt₃Co < Pt₃NiCo

Technical Accomplishments: Pt Ternary System Au/FePt₃

 $Co_2(CO)_8$ ~ 260 °C 145 ~ 225 °C

Shape Controlled Core/Shell Particles Au/FePt₃

Multimetallic Electrocatalyst :

Maintain high activity of bimetallic

Icosahderal Au core (7nm) is synthesized chemically and coated with 1.5nm Pt-bimetallic shell

10 nm

Technical Accomplishments: Pt Ternary System Au/FePt₃

Collaborations

PARTNERS

- Oak Ridge National Laboratory HRTEM
- Jet Propulsion Laboratory Alloying and Combinatorial Approach
- Brown University Chemical Synthesis
- Indiana University Purdue Theoretical Modeling
- **3M** Testing

TECHNOLOGY TRANSFER

- **GM** Collaboration to utilize highly active Pt-alloy catalysts
- Argonne National Laboratory Nanoscale fabrication (CNM)

Future Work

FY 2011

- Composition function relationship for PtM₁M₂ systems
- Synthesis and characterization of new nanosegregated PtM₁M₂ alloys and thin films
- Activity/stability evaluation of nanosegregated PtM₁M₂ alloys and TM films catalysts
- Activity/stability optimization of the most promising nanosegregated systems
- Fabrication of the best PtM₁M₂ catalysts and testing in MEA

FY 2012

- Continuous activity/stability evaluation and optimization of MEA tested catalysts
- Scaling up synthesis methods for larger production of PtM₁M₂ catalysts
- Laboratory and MEA activity/stability evaluation of the most promising catalysts

Summary

Bimetallic PtM systems:

RDE: PtNi NPs with multilayered skin have ~x6 higher specific and mass activities than Pt/C after 20K cycles (0.6 - 1.05V)

MEA: PtNi/C NPs with multilayered skin have ~3 times higher specific and mass activities than benchmark Pt/C catalyst: SA~0.8mA/cm²_{Pt}, MA~0.35A/mg_{Pt}

MEA/EXAFS: Before and after 20K cycles in MEA Pt-Pt and Pt-Ni distances remain stable indicating no change in catalyst morphology

JL

コレ

PtNi/C is highly durable catalyst, which meets DOE 2015 targets for specific activities and exceeds anticipated targets for stability (~12% loss)

Ternary PtM₁M₂ systems:

Л

