This presentation does not contain any proprietary, confidential, or otherwise restricted information

2011 DOE Hydrogen Program Annual Merit Review

SPIRE

Sustained Power Intensity with Reduced Electrocatalyst

(aka: Durability of Low Pt Fuel Cells Operating at High Power Density)

Scott Blanchet (PI) Presenter: Olga Polevaya (PM) Nuvera Fuel Cells 5/11/2011 FC014

2011 DOE Hydrogen Program Annual Merit Review – May 9-13, 2011

1

Overview

Timeline

- Kick-Off: December, 2009
- Nuvera and DOE agreed on extending to 4-year program ending 09/30/2013
- 25% Complete (03/11/2011)

Budget

- \$5.642M Total Project
 - \$3.875M DOE Share
 - \$1.767M Contractor Share
 - \$975,000 National Labs
- \$1.162M received through FY10
- \$0.915M planned for FY11

Barriers

- Barriers addressed
 - Stack Durability with Cycling: target: 5000hrs (2015)
 - Stack Cost: target: \$15/kW (2015)

Partners

Relevance: Objective and Deliverables

The technical objective is to identify and model PEMFC durability factors associated with low-Pt MEAs operating at high(>1W/cm²) power density.

The key deliverable of this program is a durability model experimentally validated over a range of stack technologies operating at high power

Approach

- SPIRE program balances modeling and experimentation.
 - Performance decay <u>model</u> is being developed based on ASTs across selected 50-cm² cell architectures.
 - Relevance of <u>ASTs</u> (component stressors) to <u>NSTs</u> (New Stress tests in fuel cell power mode) is studied in new high power density SCOF (Single Cell with Open Flowfield) cell.
 - Full-area stack testing used to <u>validate</u> the model results throughout NSTs.

Technical Approach-Experimental Design

Technical Progress – Milestones

Milestone	Due date	Status
1. Model Block diagram published.	FY2010, Q3	Complete
2. SCOF hardware validated and delivered to LANL.	FY2011, Q1	Complete
3. Comparative data for SCLC and SCOF on AST protocol is published	FY2011, Q3	In progress
<u>GNG decision:</u> Demonstrate durability results (voltage decay, diagnostic and post-test measures) in SCOF are consistent with full- area short stack testing using baseline operating conditions and materials.	FY2011, Q4	Moved to FY2012, Q1 with new 4-year plan
4. Model correlations to full-area test results published.	FY2012, Q1	Moved to FY2012, Q4 with new 4-year plan
5. Validated model and data set published and available to industry	FY2012, Q4	Moved to FY2013, Q3 with new 4-year plan

Technical Progress – Single Cell

SCOF vs. Serpentine Cell, High Pressure

SCOF hardware is delivered to LANL for validation in ASTs and NSTs.

Open flowfield single cell showed benefits both at elevated and lowered cathode pressures

Technical Progress Reduced Pt Loaded Cathode MEA – BOL

Technical Progress – ASTs

Technical progress - Stack durability

NST-N3A-2 cycles to 2A/cm² Rated Current Density.

8-cell stack , 360-cm² cell, 0.45mg/cm² total Pt loading

- Cathode ECSA loss 46-48% is consistent by CV and VIR_free analysis
- Diffusion increase by 75% loss of Po₂ at reaction sites by V-I analysis.

INUVERA

Technical Progress: Catalyst stability

Technical Progress – Membrane stability

B4 results had no correlation with NST3A-2

Collaborations

- Nuvera Fuel Cells (Industry) prime contractor
 - Program management,
 - SCOF Development, validation and high power NSTs,
 - Stack NSTs.
- Los Alamos National Lab (Federal) subcontractor
 - Single cell AST/NST testing,
 - Post-test characterization.
- Argonne National Lab (Federal) subcontractor
 - Developer of Platinum stability and fuel cell durability model.
 - Lead data analysis and post-processing for LANL and Nuvera.
- Durability Work Group Borup/Myers lead
- W.L. Gore & Associates (Industry) lead MEA developer

Proposed Future Work

FY2011

- Publish Comparative data for SCLC and SCOF on AST protocols – Milestone #3.
- Accumulate sufficient NST data sets (SCOF versus stack) in approaching GNG decision.

FY2012

- Continue NST campaign (SCOF, RIT – LANL, full-area cells - Nuvera).
- ANL to reconstruct model polarization curves using inputs from ASTs and initiate validation of model results on NST data sets.
- ANL to conduct model sensitivity tests.

Summary

Relevance: SPIRE addresses two of the most critical targets in the hydrogen program – cost and durability.

Approach: Combined experimental and modeling campaign to elucidate durability-critical factors at low Pt loading and high current density.

Technical Accomplishments and Progress:

Los Alamos Argonne

Good progress in ASTs and NSTs for catalyst aging. Performance in SCOF demonstrated at 1.2W/cm² at 0.2mg/cm² Pt loading.

Technology collaborations:

Spire activities are synchronized to other durability projects through the Durability Work Group.

Proposed Future Work:

Remaining tests with different cell architectures and reduced Pt loading are critical to elucidate the effects of load cycles in stressing MEA degradation.

Technical Back-Up Slides

Technical Approach – AST B1 timeline

Technical Progress – Modeling Pt dissolution

Ground work for Pt stability model in aqueous media is complete

2011 DOE Hydrogen Program Annual Merit Review – May 9-13, 2011

19

Technical Progress – AST B1 Data Analysis

NST load and humidity profiles

NST protocols are designed to stress ECP under fuel cell operating conditions

Technical Progress – stack NST3A-2

2011 DOE Hydrogen Program Annual Merit Review – May 9-13, 2011

22