

Metallic Bipolar Plates with Composite Coatings

Jennifer Mawdsley (PI), Suhas Niyogi, Xiaoping Wang, and J. David Carter Argonne National Laboratory

> Chinbay Fan Gas Technology Institute

Prof. Rasit Koc Southern Illinois University Carbondale

> George Osterhout Orion Industries

> > May 11, 2011

Project ID # FC024

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project started: August 1, 2009
- Project ends: Sept. 30, 2011
- Percent complete: 80%

Budget

- Total project funding:
 - DOE share: \$1697k
 - Contractor share: \$260k
- Funding received in FY10: \$486k
- Funding for FY11 (planned): \$566k

Barriers Addressed

- A-Durability
- B-Cost
- C-Performance

Partners

- Gas Technology Institute
- Orion Industries
- Southern Illinois University Carbondale

Relevance - Project Objectives

- Create a coated aluminum bipolar plate that meets the DOE performance and durability targets for bipolar plates
 - Thinner and more durable than machined graphite bipolar plates
 - Up to 65% lighter than stainless steel
- Develop a composite coating that is electrically conductive and corrosion resistant using a mixture of a fluoropolymer and inorganic filler
 - Filler: Metal carbide, boride or silicide, graphite, and/or carbon black
 - Fluoropolymer: Ethylene tetrafluoroethylene (ETFE) or Polychlorotrifluoroethylene (PCTFE)

Cross-sectional view

Relevance of this Project to the DOE Hydrogen Program

- Projected benefits of our work:
 - Reduction in the overall stack weight and/or volume
 - Reduction in costs by using scalable and known manufacturing processes
 - Stamping, welding, and spraying are all methods used to mass produce consumer and industrial goods
 - Improved durability of metal plates by developing a corrosion resistant coating
 - Provides a physical barrier to corrosive media
 - Pinhole-free coatings are already manufactured for the chemical handling industry

Technical Approach

- Explore the use of metal borides, carbides, silicides and graphite as electrically conductive fillers
 - TiB₂, CaB₆, LaB₆, TiC and TiSi₂ have higher conductivities than graphite
 - Determine acid stability of proposed filler materials
- Develop methods for making metal borides and carbides less expensively than current industrial processes
- Apply the coatings using the established industrial processes for fluoropolymers.
 - Electrostatic spraying and wet spraying
 - These low cost methods are already accepted by OEM's
- Measure electrical conductivity and corrosion resistance

Technical Approach - Milestones

Milestone	Date	Status
Fabricate a composite coated aluminum plate	December 2009	Completed*
Synthesize TiB ₂ and CaB ₆ using proposed low cost process	March 2010	Completed*
Finalize the design of the bipolar plate flow fields	March 2010	Completed*
Synthesize high-aspect ratio metal boride powders	June 2010	Completed
Fabricate a composite coated Al plate with a electrical conductivity of >100 S/cm	September 2010	Completed
Finalize the composition of the coating for the single-cell tests	December 2010	May 31
Begin single-cell tests of composite coated aluminum bipolar plate	March 2011	June 15
Final cost estimate report for high-volume manufactured cost of the composite coated aluminum bipolar plates	September 2011	On-Track

* Previously presented at the 2010 AMR

Technical Accomplishments Titanium Carbide (TiC) Powder Synthesized by Low-Cost Process

- TiO₂ coated with carbon by cracking propylene at 550°C over powder from Degussa
- Carbon-coated TiO₂ reacted at 1500°C under flowing argon to make TiC:

 $TiO_2(s) + 3C(s) = TiC(s) + 2CO(g)$

- Process allows the size, morphology, and electronic properties of the powder to be optimized
- Particle size < 200 nm

7

Illinois University Carbondale

Technical Accomplishments Titanium Carbide Has the Best Acid Stability of Candidate Filler Materials as Compared to Graphite

Sample	Time (days)	% Sample Remaining	Extra Phases in XRD	lon Concen. (mol/L)
TiC (SIU)	32	109%	none	Ti: <1.3x10⁻ ⁶
Flake Graphite (Superior Graphite)	33	94 %	none	n.a.
TiSi ₂ with TiSi & Si impurities (Aldrich)	30	132%	Ti ₃ O ₅ , TiO ₂	Ti: <1.3x10 ⁻⁶ Si: 5.6x10 ⁻³
LaB ₆ (Aldrich)	31	81 %	none	La: 3x10 ⁻⁴ B: 1.7x10 ⁻³
TiB ₂ (SIU) *	27	95 %	TiO ₂ , H ₂ BO ₂ , TiOSO ₄	Ti: <1.3x10 ⁻⁶ B: 9.0x10 ⁻²
CaB ₆ (SIU) *	31	92 %	none	Ca: 5.0x10 ⁻³ B: 1.4x10 ⁻²

- Tests conducted at 80°C under reflux conditions in an atmosphere of 3.5% H₂ in He.
- 0.001 M H₂SO₄ with 0.1 ppm NaF, pH = 3
- Ion concentration in remaining solution determined by ICP-OES
- * Previously presented at the 2010 AMR

Technical Accomplishments Electrochemical Corrosion Studies Show That TiC and TiSi₂ Are More Stable Than TiB₂ and CaB₆

Corrosion Current (A/cm ²)		/cm²)	Observations from Cyclic		
Sample	0.84 V in Ar	0.84 V in O ₂ 0.14 V in Ar		Voltammetry	
TiC (SIU)	6.24 x 10 ⁻⁶	1.34 x 10 ⁻⁵	7.06 x 10 ⁻⁶	A small oxidation peak at 0.56 V occurred when cathodic scan went to a potential less than 0.4 V.	
TiC (Aldrich, milled)	4.92 x 10 ⁻⁵	2.87 x 10 ⁻⁵	2.27 x 10 ⁻⁵	Same features as for unmilled SIU TiC	
TiSi ₂ (Aldrich, milled)	5.65 x 10 ⁻⁶	5.70 x 10 ⁻⁶	4.75 x 10 ⁻⁶	No obvious redox features	
TiB ₂ *	1.11 x 10 ⁻⁵	9.41 x 10 ⁻⁶	7.08 x 10 ⁻⁶	An initial oxidation current in the entire potential range (0 to 1.0 V) gradually decreased until stable CV occurred.	
CaB ₆ *	2.44 x 10 ⁻⁵	2.47 x 10 ⁻⁵	-3.31 x 10 ⁻⁵	Initial CV showed an oxidation peak at 0.46 V	

- Corrosion testing of TiC, TiSi₂, TiB₂ and CaB₆ powders was carried out using a standard thin film RDE electrochemical cell with 0.1 M H₂SO₄ at room temperature
- Both TiB₂ and CaB₆ exhibit high corrosion current at potentials relevant to those of PEFC bipolar plates
- * Previously presented at the 2010 AMR

Technical Accomplishments The Composite Coatings Have an Inverse Relationship Between In-Plane and Through-Plane Resistance

The target through-plane ASR is 0.02 Ω-cm²

- Through plane measurements taken at an applied load of 142 N/cm² at RT in air
- Coatings sprayed onto both sides of 6061 or 3003 aluminum substrates
 - Exception: the 30% ETFE/70% Graphite sample was only coated on one side
 - Coatings were 30-130 μm thick on each side

Technical Accomplishments Composite Films with PCTFE Have Lower Through-Plane Resistance Than Those with ETFE

Substituting TiC for half of the graphite filler lowers the ASR both PCTFE and ETFE coatings

- The target ASR is 0.02 Ω -cm²
- Through plane measurements taken at an applied load of 142 N/cm² at RT in air
- Used the method described in H.L. Wang, et al., J. Power Sources, 115 [2] (2003) 243-251
- Coatings sprayed onto both sides of 6061 or 3003 aluminum substrates
 - Coatings were 30-140 μm thick on each side

Technical Accomplishments

Bi-Layer PCTFE-Based Coatings Fabricated With Low In-Plane Resistance Top Layer and Low Through-Plane Resistance Bottom Layer

- Bilayer samples have a top coat of 40% PCTFE/40% graphite/20% carbon black (CB)
 - PCTFE-based composition with the lowest in-plane resistance
- Co-sintered bi-layer PCTFE-based coatings have similar through-plane resistances

- Coatings sprayed onto both sides of 6061 aluminum substrates
 - Coatings were 60 130 μm thick on each side
- Through plane measurements taken at an applied load of 142 N/cm² at RT in air

Technical Accomplishments Composite-Coated Aluminum Panels Subjected to Electrochemical Corrosion Tests at 80°C

- Potentiostatic tests for 24 hours at 80°C, purged with air
 - 0.74 V vs. SHE (iR is negligible)
 - Electrolyte: $0.001 \text{ M H}_2\text{SO}_4$ with 0.1 ppm NaF (pH=3)
- The target corrosion current density is 1 x 10⁻⁶ A/cm²

Technical Accomplishments Orion's Composite-Coated Aluminum Panels Show No Evidence of Corrosion

- Co-sintered Bi-layer: Aluminum oxide appears to have percolated up through the coating and deposited on the exposed surface.
 - Coatings did not spall off.
- Orion 20% CF/80% ETFE: No evidence of corrosion

Technical Accomplishments Coated Aluminum Plates Assembled into Single Cell Stack and Tested

Material	Surface Resistance (Ω)	Through-Plane Resistance (mΩ)
Blank Al	1.964	10.52
Composite- Coated Al	0.175	30.5

- Active area = 60 cm^2 . The channel depth is $760 \mu \text{m}$.
- The gasket is sealed foam polyurethane.
- Dies for a 400 cm² active area plate have been designed.

15

Technical Accomplishments Graphite Coated Aluminum Plates Show Improved Performance vs. Uncoated Aluminum Plates

Collaborations

- Partners:
 - Gas Technology Institute (Subcontractor, Industry):
 - Flow field design, aluminum stamping, sealing, hydrogen permeation testing and single cell tests
 - Lead Investigator: Dr. Chinbay Fan
 - Orion Industries (Subcontractor, Industry):
 - Coating composition and application method
 - Lead Investigator: George Osterhout
 - Southern Illinois University Carbondale (Subcontractor, University):
 - Metal boride and carbide powder synthesis and characterization
 - Lead Investigator: Prof. Rasit Koc

Proposed Future Work

- Argonne will continue to improve the electrochemical corrosion performance of the coatings by using bi-layer coatings and extending the sintering time
 - A coating composition will be chosen by May 31, 2011
- Orion will coat the GTI stamped & welded bipolar plates with a composite coating developed by Argonne
- GTI will conduct single cell testing of composite-coated bipolar plates for up to 2000 hours
 - Start by June 15, 2011
- Argonne, GTI, Orion and SIU will complete a preliminary cost analysis by Sept. 30, 2011

Project Summary

- Relevance
 - Meeting project objectives will reduce weight & cost while improving durability and water management within the stack
- Approach
 - Create a conductive, corrosion resistant composite coating on aluminum
- Technical Accomplishments
 - We expect to meet all project milestones by the end of the project
- Collaborations
 - One university and two industrial partners
 - One invention disclosure filed
- Proposed Future Research
 - Improve electrochemical corrosion protection capabilities of coatings
 - Test coated plates in single cell stack

Acknowledgements

- Jack Vaughey, Victor Maroni, Debbie Myers, Terry Cruse, Brian Ingram, Nathan Styx, T. Keith Honaker-Schroeder, Sarah Stariha, and Romesh Kumar of the Chemical Sciences and Engineering Division at Argonne National Laboratory
- Don Graczyk, Seema Naik, and Nancy Dietz-Rago of the Analytical Chemistry Laboratory at Argonne National Laboratory
- John Schlueter of the Materials Science Division at Argonne National Laboratory
- Ali Akkoyunlu and Ramesh Dudukuri of the Mechanical Engineering and Energy Processes Department at Southern Illinois University Carbondale

Technical Back-up Slides

ASR Measurement Method for Coated Plates

- The GDL used for our tests was Toray[™] carbon paper, 110 µm thick.
 - Pre-conditioned by applying a load of 318 psi (219 N/cm²)
- References:
 - H.L. Wang, et al., J. Power Sources, 115 [2] (2003) 243-251
 - U.S. Fuel Cell Council, "Electrical Conductivity Testing Protocol" (2004).

Technical Accomplishments Addition of Titanium Carbide to ETFE-Based Coatings Lowers Through-Plane Resistance

- Coatings sprayed onto both sides of 6061 or 3003 aluminum substrates
- Through plane measurements taken at an applied load of 142 N/cm²