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Overview

B Timeline
« Start: November 15, 2009
* Finish: November 15, 2011

 Progress:  70% complete

B Budget
« Total: $3.68M
—DOE: $2.42M
— Plug Power: $1.26M (34%)
« FY 2010 funding: $0.97M
« FY 2011 funding: $0.55M
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Barriers

* (A) Durability (with respect to start-
up, freezing and low relative
humidity operation)

 (B) Cost (with respect to stack and
balance of plant trade-off)

 (C) Performance (with respect to
voltage degradation, low relative
humidity and sub-zero performance)

Partners

* Plug Power

 Ballard Power Systems
— Cara Startek




Project Objective Relevance

Evaluate and develop the stack and system together to meet durability, cost,
performance and freeze tolerance requirements

» Trade-off stack and system attributes to achieve the best function and cost
Develop understanding around integrating air cooled stack technology into a
dynamic materials handling system (frequent start-up cycles)

« Every start-up of an air-cooled stack is an air-sir start; every freeze start is an air-air
start; understanding start-stop durability is key for freeze capable stack-system

Test and evaluate air-cooled stacks and system compatible operation
developed for increased freeze tolerance and durability

» Determine key failure modes and root causes
» Develop baseline understanding for freeze tolerance
« Validate mitigation strategies

Evaluate failure mechanism mitigation at MEA, stack and system level
Perform life-cycle cost analyses for freeze tolerance strategies
Document and publish summary of freeze failure analysis
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Approach

B Use understanding of market needs, system requirements, stack-system limitations,
historical data, models and small scale testing to develop stack/system operating
strategies to achieve required freeze function and durability

B Build stacks/system with mitigation strategies
B Test stack/system for against requirements and perform failure analysis
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Technical Accomplishments and Progress

Define Baseline Stack Degradation Modes BA LLARD

B Failure analysis identified membrane leaks causing corrosion and platinum
dissolution to be the dominant failure modes

Leak initiation changes
degradation rate

PiTM increase,
cathode thickness decrease
crystallite size increasa
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Technical Accomplishments and Progress

Screening with ASTs & Stack Durability Models BALLARD

Stack Vs. Membrane Accelerated Stress Test

B Guided by failure analysis e ® T come membrane materials
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Technical Accomplishments and Progress

Advanced Concept Stack Durability Testing BA“_ARD®

B Advanced MEA concepts selected based on small-scale screening and
models meet the cascaded stack durability requirement of 2500 cycles
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Technical Accomplishments and Progress

Air-Cooled Stack Freeze Test Results BA “_ [\RD®

B ACS has functional limitations in environments below -10°C
» Excessive stack cooling and low ambient RH are main causes
» Below -10°C start-up resulted in variability and catalyst damage
* Due to membrane resistance and ice accumulation in the catalyst layer

B Freeze durability cycling @ -5°C shows no change in degradation rate compared to
ambient cycling

« Recommendation: explore system modifications to keep stack temperature

above -10°C
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Technical Accomplishments and Progress

Stack-System Freeze Modeling

BALLARD

B Cathode air recirculation is feasible as a means of
maintaining stack temperatures above -10°C

 Air temperature increase versus oxygen consumption L™
for 100% recirculation is not an issue

» At peak power stack can heat up in less than 30
seconds

B CFD model shows air flow rate turn down decreases with
use of air inlet heaters

« CFD model combines fluid flow and heat transfer in a
single air channel geometry for simplicity
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Technical Accomplishments and Progress

System Operating Strategy Development

B Development of an analytical system model to evaluate performance
and durability of a Fuel Cell / Battery Hybrid System

B Collaboration with Ballard to understand stack stressors and failure
modes then develop system operating strategies to mitigate stressors

« Air-Air Starts degrade the catalyst and cause voltage degradation
« Time at OCV degrades the membrane and causes transfer leaks
» High currents and stack temperatures stress the membrane

» Mixed potentials (at start-up and shutdown) degrade the catalyst

B Baseline stack testing with customer load profiles; system model used
to generate the stack operation, durability data w/o expense of a system

E Battery

HOE " Hybrid —  Stack
Profiles !
System |

3 strategies

Analytical model used for
tested

baseline stack durability
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Technical Accomplishments and Progress

2 strateqi X
Stack Performance using Alternate System Strategies strategies e ceed
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Technical Accomplishments and Progress

Stack Performance using Alternate System Strategies | 3 Strategies exceed

Average Cell V and Leak Rate vs. Stack Hours 5000 hours durability
Reduced OCYV strategy demonstrates increased time to leak
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Technical Accomplishments and Progress

System Freeze Tolerance Testing

B Fully functional system used for Freeze Tolerance Tests
B System Integration of Air Cooled Stack (ACS)

Electrical energy storage
Thermal management
Hydrogen storage

System controls development for hybrid operation with system operating
strategies from baseline test results

Designed for ambient temperature range from -30°C to +40°C
Fan, heater and air recirculation used to control stack temperature

B Integrated system testing performed in Plug Power environmental testing

chamber
Battery
Load R .
Profiles Hybrid Stack

Integrated system for
Freeze Tolerance tests
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Technical Accomplishments and Progress

Test Results - ACS Proto System at +40C Ambient

120
Remove Remove Remove
Roof Pre-FilIter Filter . Conclusions:
. 1) Fan air flow is insufficient to maintain
100 stack at optimal temperature at 40C and 45A
: 2) Air filter is the primary cause of reduced air flow
: 3) Design air filter (2X frontal area, pleated) has
14X lower DP.
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Technical Accomplishments and Progress

Test Results - ACS Proto System at -30C Ambient
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Technical Accomplishments and Progress

Project Go / No Go Metric Overview

B Go/No Go Metric: GenDrive™ product cost reduction of 25% or greater
using an air cooled fuel cell stack (ACS) when compared to 2009 end of
year GenDrive™ with a liquid cooled fuel cell stack (9SSL)

 Inherent to product cost is that the ACS solution must meet minimum
performance and durability requirements; specifically 5000 hour durability and
sustained operation at -30C ambient

B Both the initial product cost and the product life cycle cost with liquid cooled
and air cooled fuel cell stack technology were evaluated

* Product life cycle cost includes the initial cost, maintenance costs and operating
costs

B Product and life cycle costs shown normalized to the baseline product
(2009 end of year GenDrive™)

Go / No Go Review held with DOE in December
2010 with recommendation to continue project
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Technical Accomplishments and Progress

Projected Initial Product Cost (Normalized)
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Technical Accomplishments and Progress

Projected Product Life Cycle Cost (Normalized)
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Collaboration

B Modeling and operating strategy collaboration with Ballard Power
Systems (subcontract partner)

B Stack model from Ballard / System model from Plug Power

B Models used with actual load profiles to optimize operating strategies
to meet performance, efficiency, and durability requirements

B Test data, including degradation rates and failure analysis results, are
fed back to improve the model capability

Stack Test Application
Data Load Profiles
v L--------------------------------1
Stack Model _ System Model R %ptlerralfiid | Verification
Ballard | Plug Power g P 9 Testing E
| Strategy :
System Test Data <—|
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Issues Identified and Future Work

Issue Proposed Mitigations | Next Steps

ACS durability | - Improve control strategy | - Use analytical system model to
optimize operating strategy

Stack - Larger pleated filter - Develop low pressure drop
temperature at | - Filtration space claim particulate and chemical filter
+40C ambient

Inlet air - Heater location - Use CFD modeling to optimize air
temperature - Air recirculation ducting | flow and minimize stack inlet air
gradient - Ambient air inlet ducting temperature gradients

Moisture - Heater location - Use CFD modeling to optimize air
condensing - Air recirculation ducting | flow and minimize stack inlet air

and freezing temperature gradients

- Ambient air inlet ducting

Address all issues, build test systems with design
mitigations and re-perform tests to verify performance
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Summary

Dominant ACS failure modes are catalyst dissolution and cathode carbon corrosion
during air-air starts

Two MEA designs show reduced degradation in lab testing, new materials mitigate
dissolution, corrosion and membrane leaks

AST’s and models can be used to define system operating strategies to extend
lifetime by targeting main failure modes

ACS stack not capable of a significant numbers of consecutive freeze start-ups from
below -10°C

Stack thermal model identified inlet heaters and cathode recirculation as options to
keep stack above -10°C

Minimal degradation seen from freeze start-ups from -10°C

Freeze capable stack technology more expensive than freeze prevention at system
level

5000 hour durability target met with system operating strategies to reduce air-air
starts and OCV time

Sustained operation at -30C possible with system mitigation strategies employed
but additional development needed to address temperature gradients and
condensing

Product cost and life cycle cost analysis demonstrates significant lower cost utilizing
ACS technology for material handling order picker applications
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Technical Back-Up Slides




Feasibility of Air Recirculation BA“_ARD®

B Modeled air temperature increase versus oxygen consumption for
100% recirculation
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B Results show a recirculation concept is feasible, the decrease in O2
concentration is small




Baseline Stack Freeze Results BA“_ARD®

B ACS does not function well in sub-zero conditions due to excessive cooling
of the stack

B 110 freeze-start cycles completed, start up variability was an issue
» Mainly end cells that are colder

B [sothermal constant current testing shows limitations from ice build up
when stack is below -10°C
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Freeze Failure Analysis Results BA“.ARDO

B Membrane thickness, anode catalyst thickness and cathode catalyst
cracks not affected by freeze-start
M Increase in anode cracks evident in all MEAs
B End cells showed reduced EPSA
Cathode CO sweep
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ACS Test Results, Low Ambient T (-15C)

ACS Proto System at -15C Ambient, 8-Nov-2010
Effect of Stack Air Recirculation and Heaters
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