

Fuel-Cell Fundamentals at Low and Subzero Temperatures

Adam Z. Weber

Lawrence Berkeley National Laboratory

Solicitation Partners:

United Technologies Research Center
Los Alamos National Laboratory
3M Company
The Pennsylvania State University

Project ID # FC 026

May 12, 2011

Overview

Timeline

- Project initiated FY09
 - Start September 2009
- 4 year project duration
 - End September 2013
- ♦ ~30% complete

Budget

- Total project funding
 - ☞ DOE share: \$4,700k
 - Contractor share:
 - ☞ TOTAL: \$5145k
- - **☞ LBNL** \$570k
 - Partners \$453k
 - FY10 Total \$1023k

Barriers

♣ A. Durability

\$445k

- ♥ C. Performance
- ♥ D. Water Transport within the Stack
- E. System Thermal and Water Management
- G. Start-up and Shut-down Time and Energy/Transient Operation

Partners

- Project lead: Lawrence Berkeley NL
- Direct collaboration with Industry, National Laboratories and University (see list)
- Other collaborations with material suppliers and those with unique diagnostic or modeling capabilities
- Discussion with related project leads

Collaboration: Organizations/Partners

- Lead
- Subcontractors
 - ♦ Los Alamos National Laboratory: Rod Borup, Rangachary Mukundan
 - ♦ 3M Company: Mark Debe, Andy Steinbach
 - United Technology Research Center: Michael Perry, Rachid Zaffou
 - The Pennsylvania State University: Chao-Yang Wang
- Other relationships (direct funded through other DOE projects)
 - ♦ Ion Power: Stephen Grot (Nafion® samples)
 - SGL Carbon Group: Peter Wilde (GDL and MPL samples)
 - NIST: Daniel Hussey, David Jacobson (neutron imaging of water)
 - **♦ Oak Ridge National Laboratory**: Karren More (GDL imaging)
- Other relationships (no cost)
 - ♥ UTC Power: Robert Darling (freeze data)
 - University of Michigan: Massoud Kaviany (Nafion® MD simulations, ESEM)

Relevance: Objectives

- Detailed understanding of transport phenomena and water and thermal management at low and subzero temperatures using state-of-the-art materials
 - Examine water (liquid and ice) management with traditional and thin-film catalyst layers (NSTF)
 - ♥ Enable optimization strategies to be developed to overcome observed bottlenecks
 - Operational
 - Material
- * Elucidate the associated degradation mechanisms due to subzero operation
 - Enable mitigation strategies to be developed

Improved understanding will allow for the DOE targets to be met with regard to cold start, survivability, performance, and cost

Approach

Synergistic effort of modeling and experimental characterization

- Multiscale, multiphysics continuum-based modeling
 - Develop, validate, and refine a series of models for cell performance including cold and cool operation, startup, and shutdown
- Experimentally characterize component, cell, and stack properties and performance
 - Measure critical properties including visualizing water and ice distributions
 - Utilize various assemblies and components to elucidate governing phenomena
- Durability and degradation
 - Elucidate and mitigate critical failure mechanisms related to cold and cool operation
 - Experimentally observe and characterize failed cells

Approach: Workplan/Organization

Fuel-Cell Fundamentals at Low and Subzero Temperatures -LBNL-Management **LBNL** LBNL, PSU UTC LANL, LBNL **LBNL** LANL **PSU PSU PSU** LBNL, 3M, PSU LANL, 3M Task 3. Stack and Task 1. Cold-Task 2. Degradation Task 4. Water Task 5. Model Task 6. Component start model model cell characterization deployment characterization imaging Steady state Performance Cold-start Membrane Property degradation evaluation optimization Startup Neutron Catalyst layer Simple stack Mechanical stress Performance loss Stack studies X-ray Diffusion media 3-D effects Failure analysis Failure mitigation

LBNL

- Project management and coordination
- Model development
- Ex-situ component characterization

LANL

- Ex-situ component characterization
- Single-cell durability tests
- Neutron imaging

3M

Material supplier and testing knowledge

UTRC

- Stack and cell parametric studies
- Identify and characterize failure mechanisms
- Real-world guidance

PSU

- Help with traditional, supported catalyst-layer diagnostics
- Develop 3-D scaling expressions

Other

Provide unique materials and diagnostics

Approach: FY11 Project Timeline

Major Milestones/Deliverables

- M1: Steady-state model with NSTF converges. (completed)
- M2: Complete baseline testing of sub-scale cells under normal and low temperature conditions, as well as starts from frozen state from various participants. (delayed, 70% complete)
- M3: Data/model agreement (< 10%) for isothermal starts at different temperatures and current densities. (delayed, 80% complete)
- M4: Device for capillary pressure saturation curve measurement at the ALS fabricated and tested with results for different GDLs obtained. (on-track, 80% complete)
- M5: Validated macroscopic model showing effect of compression on water content developed. (complete)
- M6: Correlation between GDL material properties and kinetic freeze rates established. (ontrack, 70% complete)
- M7: Scaling expressions for 3-D (flow-channel) effects determined. (on-track, 15% complete)

Baseline Performance

- ★ Baseline system is 3M NSTF "2009 best of class" MEA
 - Not yet with improved anode GDLs reported last year

- * Performance among the three sites is converging
 - Compression uniformity and cell assembly/hardware uniformity
 - Running NSTF is different and has required test-stand modifications and a learning curve on the conditioning procedure

Cold-Start Model

Model Geometry

Model physics

For NSTF, model CL as an interface

Thermodynamics

Standard cell potential Equilibrium H₂O content membrane, liquid, vapor, ice

Kinetics

Butler-Volmer for HOR, ORR H₂O phase change between ionomer, vapor liquid, vapor

Transport

Stefan-Maxwell diffusion for gas-phase components Darcy's law for liquid, gas phases Ohm's law for e-current Modified Ohm's law for H⁺ current H₂O transport by proton drag H₂O diffusion in membrane

Conserved quantities

Mass; Charge; Energy

Constitutive relations

Faraday's law Ideal-gas law

Properties

Function of T and H₂O content

Equations (14): 8 2nd-order PDEs; 6 Algebraic equations

Unknowns (14): $T = \omega_{\text{H2}} \text{ or } \omega_{\text{O2}}$, ω_{N2} , $\omega_{\text{H2O}} = S_L$, S_L , $S_G = \rho_L$, ρ_L , $\rho_G = \Phi_1$, $\Phi_2 = \mu_0$, ε_0

Model Validation

Model has been validated with cold-start data using traditional catalyst layers

–20 °C; preconditioning: 97 % RH at 30 औ; H₂/O₂

E. L. Thompson, J. Jorne, W. B. Gu, and H. A. Gasteiger, *JES*, **155**, B625 (2008).

H₂/Air; 0.6 A/cm²; Initial temperature: -10 »Ô

B. Paravastu of UTC Power, personal communication, November 10, 2010.

Isothermal Cold-Start Simulations

- At high current densities, get ohmically and not mass-transfer limited
 - Protons, not oxygen, can limit performance
 - Not a true limiting current
- Durability concerns at high-current-density starts due to rapid build up of ice

Nonisothermal (NSTF) Cold-Start Simulations

- NSTF has no capacity to store water during cold start
 - Impacts start-up time
 - Overcome this by starting drier and harder

Need to look into tradeoff between water generation and removal rates

Isothermal Cold-Start Data

- Use traditional catalyst layers
 - Know that lower temperatures and higher current densities are worse for cold start...but what about CL design?

*A. Nandy, F. M. Jiang, S. H. Ge, C. Y. Wang, and K. S. Chen, *JES*, **157**, B726 (2010)

Catalyst layer thickness can increase storage capacity which helps isothermalstart performance, especially at lower temperatures, until get ohmically limited

Isothermal Cold-Start Data

- Thicker membrane offers more capacity for water absorption
- Impact decreases at lower temperatures due to slow water diffusion/absorption

* Ionomer-to-carbon ratio

- Interplay between layer porosity and ionomer conductivity and storage capacity
 - High I/C: porosity (storage) limited
 - Low I/C: conductivity limited

Freezing Fundamentals

- Freezing is controlled by kinetics with induction (nucleation) and growth phases
- Use isothermal DSC to determine rate equation for GDL materials
- Induction
 - Derive from classical nucleation theory and statistical set of experimental data (see next slide)

- Governed by heat transfer
 - Removal of heat of freezing from freezing front through the liquid is limiting (low Stefan number)

Freeze Induction Time

- For induction time, analyze data using classical nucleation theory
 - Poisson distribution at each temperature
 - Assume heterogeneous nucleation

- Water does not freeze in GDLs until subcooled temperatures
 - More hydrophobicity increases the degree of subcooling
 - Environmental SEM confirms subcooling
 - SGL GDLs, top is less hydrophobic
 - NMR also confirms subcooling

Catalyst-Layer Water Uptake

- * Painted thick catalyst layers onto PTFE membranes (I/C = 0.4, 40 μm)
- * Measured water uptake in dynamic vapor sorption: $\lambda_{catalyst} = \frac{M_{catalyst} M_{catalyst}^{dry}}{f_{ionomer} (1 \varepsilon) M_{catalyst}^{dry}} \frac{EW}{18}$
- Water uptake is below that of bulk Nafion®
 - Delayed swelling and domain filling?
- Pt seems to increase water uptake
 - Do not expect capillary condensation except maybe at highest activity
 - Implies Pt/Nafion® interaction

Catalyst-Layer Water Uptake

- Painted thick catalyst layers onto PTFE membranes (I/C = 0.4, 40 μm)
- Measured capillary pressure saturation relationship using pressure control

- ♦ Appears to be mainly (~2/3) hydrophilic with some smaller hydrophobic pores
- Sample with carbon only (no Pt) appears somewhat less hydrophilic (not shown)

Catalyst-Layer Surface Water

- ESEM agrees with mainly hydrophilic behavior for both traditional, Pt/C, and NSTF catalyst layers
 - Section Section Section 5 Expect to freeze much closer to 0°C unless pore-effects dominate

Future Work

- Cell performance
 - ♦ Testing of non-baseline assemblies
 - Isothermal and adiabatic starts including cycling studies for tracking durability
 - Provide model-validation data
- Component characterization
 - Catalyst layers
 - More data on water-related properties
 - Examine ice generation and form using IR thermography and X-ray tomography
 - Diffusion media
 - Capillary pressure saturation relationships
 - Impact of flowrate, temperature, injection sites (MPL analogs), materials
 - Measure effective gas-diffusion coefficient as a function of saturation
- Modeling of cold start
 - Sexual equation in the play between water storage and movement for transient and startup
 - Develop 3-D to 2-D downscaling correlations
 - Model the low-anode-pressure and alternative-GDL results that 3M has obtained
- Stack studies for temperature distribution and performance characterization
- Understand and increase the operating window with thin-film catalyst layers

Summary

* Relevance/Objective:

Help to enable, optimize, and mitigate failure in state-of-the-art materials through fundamental understanding of operation at low and subzero temperatures

* Approach/Collaborations:

Use synergistic combination of cell, stack, and component diagnostic studies with advanced mathematical modeling at various locations (national laboratories, industry, and academia)

Technical Accomplishments:

- Site baseline data converging so that systematic cell testing can begin soon
- Developed and initially validated 2-D, cold-start model
- lsothermal data and modeling demonstrate impact of catalyst-layer properties and membrane thickness on cold start
- Determined kinetic rates and freezing phenomena inside GDLs
 - Subcooling due to nucleation induction times
- Analyzed water uptake in traditional, supported catalyst layers

* Future Work:

- Understand liquid-water movement, interactions, and freeze in fuel-cell components
- ♥ Benchmark cell and stack performance and durability with different assemblies

Technical Back-Up Slides

Expected NSTF Variability

- 16 identical NSTF 2009 Best of Class MEAs across 8 station+cell pairs show good performance reproducibility
 - Many sources of possible variability stations, cells, MEA fabrication, cell assembly, ...
- MEA to MEA and cell assembly variability (same station+cell) is approximately half the total variability at 1.46 A/cm²

Modeling Isothermal Cold Start

Key characteristics of isothermal starts can be used to verify the model

Nonisothermal Cold-Start Simulations

- Use model to examine start time and durability (ice pressure)
 - Increasing CL porosity and ionomer content reduces start time and ice pressure
 - Tradeoff of water capacity, gas diffusion, and effective conductivities
 - Agrees with isothermal start data
 - Examine start potential and initial water content
 - Tradeoff between time and ice pressure

Nucleation/Induction

Free energy of freezing

Classical nucleation theory

$$J = 7.9 \times 10^8 \exp\left(\frac{-9.4 \times 10^4}{T(\Delta T)^2}\right) \frac{\text{nuclei}}{\text{m}^3 s}$$

$$R(t) = 2\eta_0 \sqrt{\alpha_l t} \quad \text{where} \quad \eta_0^2 \exp(\eta_0^2) \left[\exp(-\eta_0^2) - \sqrt{\pi} \eta_0 \operatorname{erf}(\eta_0) \right] = \frac{c_{p,l} \Delta T}{2\Delta \hat{H}_f} = \frac{1}{2} \operatorname{Ste}$$

ESEM

* Calibration

Beam heating expect to be < 0.5°C </p>

* GDL phase diagram

