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Overview

= Timeline = Barriers:
e Start Date: 6/1/07 * D. Water Transport within Stack
 End Date: 11/30/11 * E. System Thermal and Water
* Percent Complete: 85% Management

e @G. Start-up and Shut-down Time
and Energy / Transient Operation

= Budget:
* Total Project Funding: " Partners:
. DOE $4,958K e Ballard Power Systems
e Contractors $1,463K * BCS Fuel Cells
 Funding Received in FY10 * ESIGroup, NA
* $1,175K DOE * Techverse
» $295K Cost Sharing by Team e U. Victoria
* Funding for FY11 e SGL Carbon
» $818 K DOE
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Program Objectives => Relevance

= Overall:
* Improve understanding of the effect of various cell component properties and structure
on the gas and water transport in a PEM fuel cell;
 Demonstrate improvements in water management in cells and short stacks; and

* Encapsulate the developed understanding in models and simulation tools for
application to future systems.

= FY 2010 and 2011:

* Evaluate cell-scale water transport models on component and operational cell level;
validate and apply to sensitivity studies

* Data and tools for screening of concepts to improve water management while increasing power
densities, mitigating liquid-water induced pressure drops and transients for system-level benefits

* Develop and evaluate concepts for water management improvement
* Component interaction and flooding sensitivity studies for performance improvement
* Channel design and GDL modification for effective water removal with low pressure drop
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Approach

Improved Water Management Through Improved Component Designs and Operating Strategies

Advanced Model Development
P LBM models for microscale flow thorough porous media: in-plane and

(CFD/LBM) through-plane permeabilities, capillary pressure, and wetting characteristics
CFD models for macroscopic two-phase flow in channels, GDLs and interfaces,
coupled with electrochemical reaction and transport through membrane

Simulations of gas, water and thermal transport in a unit cell complement
experiments to develop understanding, evaluate concepts

Experimental Characterization Ex-situ characterization: key materials properties and sensitivity to treatments,
water transport analysis in GDLs and micro-channels

\ In-situ diagnostics: current and water distribution
=

>N/

N /7

&

/_ _ \ < Provides fundamental understanding, validation data for physics-based models
AL from component to cell level

e Cell flooding sensitivity to materials and operating strategies
e Implement and test performance improvement strategies

Improved component designs and operating strategies, tools for addressing water
transport in future generation designs
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FY 10-11 Plans and Milestones

Month/Year Milestone Comments % Complete

Mar 11 Cell scale models tested and Progressing for steady state; 75%
validated against steady and | transients needed to address
transient operational cell data | extreme conditions

Mar 11 Complete fuel cell water Revised to 9/31/11, 50%
transport model Includes testing against
improvements and code experimental data gathered
package development during 3/11-9/11

May 11 Complete validation of water | Revised to 10/31/11 50%
transport model and make
recommendations for water
management improvement
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Model Evaluation: Two-Phase Channel dP with GDLs
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= Ballard Two-Phase dP measurements, injecting
water through GDL at channel top

= Models capture trends with design variation and
operating conditions
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Liguid Water Impact on Pressure Drop

Ballard Design Cathode Channel

Gas flows from left to right

e Liquid water injected from

bottom channel wall to

evaluate effects in model

Liquid flow increases
towards outlet

Alpha
<

0 mbar @ 1A/cm2

L

: Experimental ~ 34

/

/

[N (=]
= i
=] =

Delta_P (mbar)

Fixed gas flow

Lig flow changed

oo a0 1

0o 15.0 200
Liquid/Gas Flow Rates

250 300

Increasing DP predicted with Liquid Water

Gas flow pushed

towards upper wall

VelocHyMagnitude — m/s
18.31

= Ballard study of forward prediction of wet pressure drop, indicating extent
of channel water corresponding to observed operational pressure drops
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Channel/Channel Flow Sharing Analysis

= Ballard study for a low pressure drop cell design

|
28 parallel channels Channel 28

Outlets

Air

Channel 1
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% Flow Variation

Liqguid Water Impact on Channel/Channel Flow Sharing
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= Wet Flow Sharing is 20.9% compared to dry case at 1.6% under initial (left) scenario
* Most of the liquid water enters first few channels, the first channel being the worst with
nearly 18.6% below the average flow
= Doubling air flow (right): Wet Flow Sharing is 11.2%
* First channel air stoich improved from 18.6% to 8.7% below average as air stoich increased

= Models allowing forward prediction of liquid water impact in Cells and Channels
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Liguid Water Management in Cells
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= Ballard study of Low DP baseline cell with 28- 000 1 Stoich reduction vs Lig/Air Flow
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G0.00
simulate the “cell in stack behavior” for predicting | /
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Ballard Design Cell Model

Saturation dependence of capillary
pressure used in the models,

residual saturation 0.2
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* Layout of operating cell model: counterflow cathode and anode, symmetry conditions to reflect
multiple channels in parallel

* Cooling channel effects approximated with linear applied temperature profile based on
measured/controlled values

* Full two-phase flow model in channels and porous regions coupled with heat and mass transfer,
electrochemistry, and Springer model for membrane water content
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Current Density, A/cm?
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= Base conditions 1 A/cm?, Ox 87% RH stoich 1.8 at 3 bar,

Fuel 46% RH stoich 1.6 at 3.2 bar,

coolant 65°Cin 75 °C out

=" Model operated at fixed bias corresponding to measured
voltage, parameters from Sui et al” and Ballard

= Water content under predicted in both membrane and GDL

* Ref P.C. Sui, S. Kumar, N. Djilali, J. Power Sources, 180, pp. 410-422 (2008) and pp. 423-432 (2008)
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Modified GDL properties to match measured data:
* Increased model GDL tortuosity to 4 from 1 to match measured through-

plane effective diffusivities

* Increased through-plane GDL permeability from 1 Darcy to 3 Darcy, in-plane

to 12 based on measured values

Increased membrane equilibrium water content at saturation to 22

= Model is oxygen transport limited near cathode exit
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GDL Materials Evaluation: Accelerated Aging

7000 160
T
6000 - { 150 |
~4-0.75 V 35 EC MPL side

o —=-1.5V 35 EC MPL side
@ .
5 5000 —4—35 BC - 5% Teflon w B 0.75V 35 EC Carbon side
@ ] ——1.5V 35 EC Carbon side
w E 10% Te - .
g —-35 CC - 10% Teflan g)
= 4000 | 35 EC - 30% Teflon 3 130
= s
3 9
e =]
£ c
= 3000 < 120
@ Q
i :
e o
= 2000 O 410
[=%
[+-]
(¥]

1000 100

__./
o 90
0 1 2 3 4 5 6 7 0 1 2 3 4 5
Exposure Time to Electrical Current, Hours Exposure Time, hrs

= Techverse performed aging studies ex-situ by applying bias to humidified GDLs:

* Focused on determination of the change in the properties of GDL media when
exposed to electrical current as would be the case in a working PEM fuel cell

 Commercial media found to lose hydrophobicity as evidenced by reduced capillary
breakthrough pressure and surface contact angle; increased water permeability

* Increased current level accelerated the rate of loss of hydrophobicity as determined
by surface contact angle
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Images of Teflonated GDL Media Response
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= SEM of SGL Carbon 35 EC media, approximately 30% PTFE loading
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Teflon® Fiber Coverage Comparison
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Comparison of GDL Properties

= Developed coating of carbon fibers by electrophoresis, in contrast to
commercial media, leads to:

* More uniform PTFE coatings for lower residual saturation, increased
hydrophobicity at equivalent loadings

» Better retention of hydrophobic properties in simulated aging experiments

Sample Residual Saturation | Breakthrough Pressure
n/a % Pa

35 EA - 30% Teflon 15.52 587
35 DA - 20% Teflon 25.54 1077
35 CA - 10% Teflon 7.6 1175
30% in-house AA sample 2.44 1959
7.5% in-house AA sample 2.32 1763
30% in-house A Toray 0.416 4800
15% in-house A Toray 0.6 3400
6% in-house A Toray 0.8 3100
30% in-house B Toray 0.769 3918
18% in-house B Toray 0.9 3300
4% in-house B Toray 1 3100
10% commercial Toray 3.3 780
20% commercial Toray 4 1000
30% commercial Toray 2.5 1100
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Potential, V
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GDL Comparison: Single-Cel
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= Electrophoresis-treated and commercially available media, initial evaluation
by BCS Fuel Cells:

* MPL is needed for good performance in BCS MEAs under standard operation,
development of MPL process in progress

* Electrophoresis impregnated media indicates greater resistivity due to fiber coating
 Slightly higher open circuit voltages with electrophoresis impregnated media

0.3
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Interactions/Collaborations

= Partners

* Ballard Power Systems: Measurement tools, material data, and operational
test results to validate and support the development of models for water
transport and management

e Techverse: Materials characterization and modification

* BCS Fuel Cells: Operational cell and stack diagnostics, materials sensitivity
and serpentine channel design

* ESI Group, NA: Model implementation and software integration, model
testing

e SGL Carbon: GDL and bipolar plate materials

e U. Victoria: GDL permeation, channel droplet injection and transport
guantification
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Future Work and Milestones

FY11 Plans:

= Model Testing and Simulation Package Development

* Cell-scale model evaluation against steady and transient data (CFDRC, Ballard)
including current density, MEA water, and crossover; emphasizing extreme conditions
for excess water or dryout (temperature, RH, stoich)

* Continued improvement of numerical stability, user interface and user access to key
properties (CFDRC, ESI)
= Water Management Improvement
e Experimental and Simulation Parametric Studies Focusing on:

* Materials modification, primarily GDL selection and treatment, and operating
strategies (BCS, Techverse, CFDRC)

* Channel design and operating strategies for effective liquid water removal with low
pressure drop (Ballard, CFDRC)

Upcoming Milestones:
* Final model improvements and code package development complete Sept 2011
* Assemble, test, and demonstrate improved self-humidified cell Oct 2011
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Summary

= Relevance:
* Effective water management is necessary to improve automotive fuel cell performance,
freeze/thaw cycle tolerance, and cold startup times
= Approach:
* Integrated characterization and model development to advance understanding, application of the
resulting knowledge to optimization
= Technical Accomplishments and Progress:

* Predicted design and operating condition sensitivity of observed wet pressure drop with
experimental measurements of wet pressure drop for two-phase flows in channels and GDLs,
began model application to screen channel and cell design

* Improved stability of two-phase cell scale models, demonstrated improved agreement with
measured current density profiles

* Developed a technique for reproducible, controllable hydrophobic treatment of GDL media

= Proposed Future Work:
* Refine and validate the developed integrated models using operational cell-scale steady and
transient data;
* Apply validated measurement and simulation tools to assess water management optimization
strategies: Channel design for effective removal with low pressure drop; GDL design and treatment
for improved cell performance
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