

Dimensionally Stable MembranesTM

Shelly Brawn, Han Liu, Cortney K. Mittelsteadt* Giner Electrochemical Systems, LLC

Anna Flach, Fred Johnson, Israel Cabasso SUNY-ESF

FC036

1

2011 DOE Hydrogen Review

Dimensionally Stable Membranes for High Temperature Applications

Timeline

- Begin 4/3/2006
- Extension 10/1/2011
- 90% Complete

Budget

- Total project funding
- \$1.5 M DOE Funding (w/go)
 - \$529K Recipient
 - 35% Cost Share
 - \$241K received FY 2010
 - \$108K Remaining (ext. to Nov. '11)
 - \$1100K DOE funds spent to date

Barriers Addressed

- A. Durability
- B. Cost

Technical Targets (DOE 2010 Targets)

- 0.10 S/cm at 1.5 kPa H_2O Air inlet
- < \$40/m²
- > 5000 hour lifetime
- Stability in condensing conditions

Partners

- General Motors
- SUNY-ESF

OVERVIEW

- OBJECTIVES
- APPROACH and ACCOMPLISHMENTS
 - Rationale
 - Two Dimensionally Stable Membranes[™]
 - Three Dimensionally Stable Membranes[™]
- CHALLENGES

OB]	[EC]	ΓIV	ES
J			

YEAR	OBJECTIVE
2006	Determine the effect of pore size and substrate thickness. Demonstrate polymerization of the PFSA.
2007	0.07 S/cm at 80% RH at room temperature.
2008	Go/No-Go Decision: Demonstrate, by the 3rd Quarter, membrane conductivity > 0.1 S/cm at 25% relative humidity at 120°C using non-Nafion [®] materials. Samples will be prepared and delivered to the Topic 2 Awardee.
2009	Demonstrate ability to generate these materials in quantities suitable for automotive stack. Prepare samples for Topic 2 Awardee
2010	Build short stack with optimized materials and demonstrate durability
2011	Demonstrate how these materials can be produced to meet DOE cost targets

OBJECTIVES: Ultimate Goal

Meet performance targets with film that can be generated in roll at DOE cost targets

OVERVIEW

- OBJECTIVES
- APPROACH and ACCOMPLISHMENTS
 - Rationale
 - Two Dimensionally Stable Membranes[™]
 - Three Dimensionally Stable Membranes™
- CHALLENGES

APPROACH: Rationale

- Limitations of Ionomers based on –SO₃H functionality
 - Water uptake/retention as a function of RH
 - Conductivity Limitations
 - Dependence on Water
 - Functionality

APPROACH: Rationale Water Uptake of Ionomers based on –SO₃H Moiety

Water Content is the same regardless of pendant group

2011 DOE Hydrogen Review

APPROACH: Rationale Importance of Ionic Functional Group, Morphology

Conductivity of Various Ionomers and Model Compounds at 80°C

APPROACH: Rationale

Limitations of Ionomers Based on -SO₃H Moiety Predicted Conductivity at 100°C for Various Perfluorinated Membranes

APPROACH: Rationale

CONCLUSIONS

SO₃H Polymers will need

- Very low EW
- Perfluorinated End Groups
- To be very thin

THESE THREE REQUIREMENTS LEAD TO POOR MECHANICALS

OVERVIEW

- OBJECTIVES
- APPROACH and ACCOMPLISHMENTS
 - Rationale
 - Two Dimensionally Stable Membranes™
 - Three Dimensionally Stable Membrane™
- CHALLENGES

APPROACH: Lower EW of perfluorosulfonic acid ionomers to increase low RH conductivity and support the ionomer with two and three-dimensional non-ionic materials

- Two Dimensionally Stable Membrane
 - Generate Supports

 Thickness and Pore Size
 - Incorporate Ionomers • 700 to 1100 EW PFSA
 - Characterize
 - Performance
 - Durability
 - Cost/Manufacturability

Mag:700 kV:20 plasma clean, bottom surface 10 um

- Three Dimensionally Stable Membrane
 - Develop Bulk
 Polymerization Methods
 - Polymerize in Selected Supports
 - Characterize
 - Performance
 - Durability
 - Cost/Manufacturability

ACCOMPLISHMENTS: 2DSMTM In-Plane Conductivity

700 EW Membrane with DSMTM Support, Conductivity as a function of RH

CHALLENGES: $2DSM^{TM}$

Automatic solution dispensing Automatic speed control Manual support collection Solution recycling can be implemented In Separate DOE Project Developing Low-Cost Casting Technique (**DE-FG02-05ER84322**) PI: Han Liu

2011 DOE Hydrogen Review

OVERVIEW

- OBJECTIVES
- APPROACH and ACCOMPLISHMENTS
 - Rationale
 - Two Dimensionally Stable Membranes™
 - Three Dimensionally Stable Membrane™
- CHALLENGES

APPROACH: $3DSM^{TM}$

- Cost of Laser Drilling
 Prohibitively High
- Three-Dimensional Supports Commercially Available
- Using Conventional PFSA Ionomers to Meet Cost Targets
- Synthesizing New Low EW Ionomers to Meet Performance Targets
 - Work being done by Israel Cabasso's Group at SUNY Syracuse Polymer Research Institute

APPROACH: FOCUS OF PAST YEAR

- THINNER!
- Lower EW ionomers into Thin supports
- Two Support Materials have been used
 - Type "ThinB" is easier to make thin, more difficult to make compatible with lower EW materials
 - Type "ThinC" more difficult to make thin, easier to incorporate low EW materials
- Demonstrate Chemical Stability
- New Ionomers for lower EW (SUNY-ESF)

Three Dimensional Supports

- Advantages:
 - Many commercially available
 - Ionomer is easily added by solution
 - Roll to Roll processible
- Disadvantages:
 - Making thin supports for some materials
 - Support/Solution compatibility
 - Getting high ionomer content
 - High wt% dispersion
 - High void volume

80% Void (very good)

Add ionomer solution

Press

Film forms on top and/or bottom Center is now 20% support 20% ionomer 60% void

Center is now 50% ionomer, 50% support. Conductivity penalty = 2*tortuosity

2011 DOE Hydrogen Review

ACCOMPLISHMENTS: 3DSM[™] Previous Results with 1 mil membrane

- Custom Membrane from Millipore
- Swelling is Comparable to thick membrane
- Completely Filling Support was a Major Challenge
- Consistency through the plane was a challenge
- ~25% Conductivity Penalty
- 10,000 RH Cylcles demonstrated
- Could not incorporate low EW materials into the matrix
- Difficult making membranes below 25um

ACCOMPLISHMENTS: 3DSM with ~ 850 EW DOE Hydrogen Program Florida Solar Energy Center (FSEC) Test Results

If we had 18 um membrane with our lowest EW ionomer resistance would be ~ 1/3

2011 DOE Hydrogen Review

ACCOMPLISHMENTS: Chemical Stability Enhancement

Florida Solar Energy Center Testing

Fluoride release during OCV testing demonstrates much enhanced chemical stability. Testing before and after durability testng showed little performance change

ACCOMPLISHMENTS: 3DSM with 3M 660 EW Ionomer

3M gave us another low EW material to test

Improved from Nafion

Still needs to be better

ACCOMPLISHMENTS: 3DSM with SUNY Ionomer

SUNY continues to make alternative PFSA's but reaching DOE goals with "workable" materials is daunting

2011 DOE Hydrogen Review

OVERVIEW

- OBJECTIVES
- APPROACH and ACCOMPLISHMENTS
 - Rationale
 - Two Dimensionally Stable Membranes[™]
 - Three Dimensionally Stable Membrane™
- CHALLENGES

CHALLENGES

- Lower EW in Thinner Supports
 - 12-15 um target
 - Get as close to DOE target as possible at low RH
- Demonstrate Cycling to 20,000 Cycles
- This project extended through October to achieve these goals

SUMMARY

- Year 1 Milestones Achieved
 - DSMs with a wide range of pore size and thickness restrain x-y swelling
 - Polyimide and polysulfone both shown to be effective supports
 - Effective methods of generating new PFSA polymers have been generated
- Year 2 Milestones Achieved
 - Conductivity targets have been met
 - Discrepancy between Bekktech and GES results
 - Fuel Cell Performance Improvements Shown
 - Electrode Improvements
- Durability demonstrated through RH cycling
- Realistic Pathways for Meeting Cost Targets Seen for both Paths.
 - Millipore estimates $10/m^2$ for support and processing.
 - Toll-coaters contacted and adding PFSA to membrane is c/m^2
 - Key question is cost of PFSA
- To reach ultimate DOE Goals we need to incorporate the low EW materials into a thinner support.
- Membranes developed will have commercial applications in GES electrolyzers

2011 DOE Hydrogen Review

OBJECTIVES: Ultimate Goal

Meet performance targets with film that can be generated in roll at DOE cost targets

