

Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes

Andrew M. Herring Colorado School of Mines Mathew H Frey 3M Corporate Research Materials Laboratory 5/11/11 Project

Project ID FC039

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Project Start: April 1st 2006
- Project end: September 30th, 2011 (6 month NCE)
- 100% Complete

Barriers

- C Performance
- B Cost
- A Durability

Budget

- Total project funding
 - DOE \$1,500K
 - Contractor \$376K
- Funding for FY10
 - \$300K (\$45K)
- Funding for FY11 to date
 - \$100K (\$45 K)

Partners

- 3M Industrial
- Project lead CSM

Objectives/Relevance

•Overall	 Demonstrated a hybrid HPA polymer (polyPOM) from HPA functionalized monomers with: – σ >0.1 S cm⁻¹ at 120°C and <50% RH (Barrier C)
• 2010	•Optimize hybrid polymers in practical systems for proton conductivity and mechanical properties - acheived (Barrier C and A)
• 2011	•Optimize hybrid polymers for proton conductivity, mechanical properties, and oxidative stability/durability (Barrier A, B, and C)

Unique Approach

- Materials Synthesis based on HPA Monomers and attachment to commercially viable polymers, Novel "High and Dry" proton conduction pathways mediated by organized HPA moieties – A NEW Ionomer System
- Generation I films Acrylate co-monomers, polymer system in a kit,
- *Generation II films* TFVE co-monomers
- Generation III films Attachment to 3M Dyneon Fluoroelastomers

Approach - use Functional Inorganic Super Acids: Heteropoly acids

- High proton conduction, e.g. 0.2 S cm⁻¹ at RT for 12-HPW
- Thermally stable at the temperatures of interest, <200 °C
- Synthetically Versatile even simple salts are interesting
- +/-
 - Water soluble but easily immobilized by functionalization in polymers
 - Reduced form electrically conductive, but fuel cell membrane environment generally oxidizing, however can be used to advantage on anode
 - Proton conductivity dependency on water content/interaction with polar/protonic components
 - Known to decompose peroxides

Previous Accomplishments Generation I Films – PolyPOM85v/BA

Progress - Generation II Films

Mg powder,ClSi(OEt)3

dry THF, -10 to +1 C

Compound III-A

SiW11039-4

K4SiW11O39[(TFVE-Si)2O]

Compound II

CH₃CN/water(3:1)

room temp, pH 1.8

K₈SiW₁₁O₃₉

Si(OEt)3

Compound III-A

7

- Trifluorovinyl ethers (TFVE) functionalized HPA monomers synthesized on <100g scale
- Trifluorovinyl ethers polymerize thermally
- Large number of co-monomers available

Proton Conductivity - Variable

 Appears to synergistically vary based on film forming, chemistry, and morphology – complex design space

Conductivity Dependence on Morphology at 80 °C, RH 80%

1st Approximation co-monomer chemistry important

Crystalline Phases observed at low RH

SAXS, 25%, 50%, 75% and 95% RH and 80 °C

DVS, 60 °C

- Bragg peaks observed at low RH in SAXS, Phase changes observed at low RH in DVS
- Amorphous phase is the highly conducting phase
- Water content decreases on RH cycling (implies hard to measure equilibrium properties and increasing brittleness on cycling)

Mass % Water Uptake of Three Different Membranes

•HPA containing membranes have considerably less water uptake than PFSAs

Progress, Generation III Polymer – Synthesis

20-40wt%

K₈[SiW₁₁O₃₉]•13H₂O

Membrane Processing

HPA attached, acidified hybrid fluoropolymer (crumb) was dissolved in DMSO at 4% concentration. Solution was then cast on ClearSIL®T10 silicone coated liner (or Kapton® polyimide (PI) liner in some cases). The resulting membrane below was first heated at 120°C for 10min; Temp was then increased to 180°C, membrane was heated at 180°C for 10min.

HPA attached hybrid fluoropolymer membrane cast on T10.

• Film processing critical to high performance

Morphology AFM imaging --- Phase Image (<u>recorded at CSM</u>)

• Film forming critical to high performance

Proton Conductivity, 95, 120 °C

- Conductivity very impressive for 37wt% HPA loading
- With optimization of loading and film properties all targets could be met.

Tensile Testing

• Functionalized Polymer gives stronger film could be tailored by Dyneon chemistry

Polyered by 3M

Manufacturing Feasibility Assessment

(01/07/2011)

Selected high-level comments:

- "This is a complex fine chemical synthesis."... "Fine chemical processing is a lot like this."
- "Chemically, there are no showstoppers."..."No chemistry here that scares me."
- "I wouldn't be too discouraged."
- "There are no exotic conditions...normal glassware."

Selected detailed comments:

- "Process optimization is needed to improve volume utilization."
- "% solids of each of these process steps will have a big impact on your reactor volume efficiency."
- "A lot of dissolving and drying" ... "Can you avoid drying to a solid every time?"..."Can you do any steps neat?"
- "Can you do solvent exchanges?"..."keep it soluble?"
- "Can you use a different PVDF-HFP?...some may be easier than others...different molecular weight?"
- "To use less solvent, could you carry some impurities along, and then clean up just once, at the end?"

If one were to pursue this material commercially at 3M, next steps:

- Initiate "New Materials Introduction" program within MRD.
- Review for entry into MRD lab.
- Carry out focused work against detailed comments above.

Overall Conclusions:

- The HPA-modified PVDF-HFP preparation appears likely to be feasible in manufacturing.
- Any additional development work on this type of material should include objectives related to solvent usage and process simplicity, as suggested above.

Collaborations

- Prime: Colorado School of Mines STEM University
- Sub: 3M Corporate Material Research Laboratory
- Other Collaborators: the following have agreed to test membranes ex-situ or as MEAs from promising films.
 - 3M Fuel Cell Components Group
 - FSEC
 - GM (has offered to test promising materials)
 - Nissan Technical Center, North America (has offered to test promising materials)

Proposed Future Work

- Project ended March 31st 2011, 6 month NCE granted to finish NMR characterization of best films as CSM NMR facility was down for 24 months, completion and final report before 2011 Q3.
- Films tested for oxidative stability 2011 Q2

Summary

- Consistently High Proton Conductivity in Robust films
- 2 New Film Chemistries optimized
 - High Oxidative stability
 - Excellent Mechanical properties

	-		
	DOE target 2010	FY10	FY10
H ⁺ conductivity	70 mS/cm	50 mS/cm	Matched with
At 20°C		50%RH, 50°C	practical
			chemistries
H ⁺ conductivity	100 mS/cm	>100 mS/cm	Conductivities
at 120°C		<50%RH	low in new
			polymers, but ASR targets in
			reach

Technical Back-Up Slides

SAXS Parameters for PolyPOM 75 and 85v, 80°C

 Higher inorganic loading increases RH range over which swelling is minimized.

Water Vapor Sorption Profile of a PolyPOM-85v Membrane at 60 °C

Fuel Cell Testing, PolyPOMs

Figure 4. Polarization curve for the maximum performance of a 50 cm² MEA constructed from a 150 rm thick P(SW1175v-∞-BA-∞-HDDA) film. H₂/ air = 800:1800 sccm, 708C, 75 % RH, ambient outlet pressure. Full details of MEA construction and testing were described previously.^[12]

Figure 1. Voltage transients for C5 CCM during the second attempt at drawing current. Conditions: H2/air, 80 °C/100% RH

3M -2009 FSEC -2011