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Overview

• Start: June 2006
• End: May 2011
• 96% complete

• Total project funding
– DOE share: $1500k
– Contractor share: $600k

• Funding received in 
FY10: $300k

• Funding for FY11: $100k

Timeline

Budget

Barriers
• Low Proton Conductivity          

at 25-50% Inlet Relative 
Humidity and 120oC

• Univ. of Central Florida
– Membrane characterization, 

MEA fabrication & evaluation
• Oak Ridge National Lab

– Membrane characterization, 
MEA fabrication & evaluation

• Polymer Partner 
– Polymer & membrane 

fabrication & characterization
• Additive Partners

– Additives synthesis & 
characterization

• Consultants
– Polymer, additives

Partners
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Relevance
Objectives:
• Develop membranes that meet the DOE performance, 

life and cost targets, including improved conductivity 
at up to 120°C and low relative humidity (25-50%)

• Develop membrane additives with high water retention and               
high proton conductivity

• Fabricate composite membranes (mC2)

• Characterize polymer and composite membranes

• Fabricate MEAs using promising membranes and characterize (UCF)
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Relevance
Impact of High Temperature Membrane:

• Higher conductivity membranes increase power density and 
efficiency of the fuel cell stack

• Operation at low relative humidity (RH) eliminates need for 
external humidification  simplifies the fuel cell system 

• Operation at elevated temperatures simplifies thermal 
management (smaller radiator)

• Simpler system increases overall efficiency of fuel cell power 
plant  contributes to DOE 2015 cost target of $30/kWe

• Reduced weight of automotive fuel cell system leads to higher 
fuel efficiency
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Approach for the Composite Membrane
Target Parameter DOE Target 

(2010) Approach

Conductivity at:  120°C 100 mS/cm Multi-component composite 
structure, lower EW, additives with 
highly mobile protons

:  Room temp. 70 mS/cm Higher number of functional groups
:  -20°C 10 mS/cm Stabilized nano-additives

Inlet water vapor partial pressure 1.5 kPa Immobilized cluster structure
Hydrogen and oxygen cross-over 
at 1 atm

2 mA/cm2 Stronger membrane structure; 
functionalized additives

Area specific resistance 0.02 Ωcm2 MEA with matching polymer in 
membrane and electrodes

Cost 20 $/m2 Simplify polymer processing
Durability:

- with cycling at >80°C
- with cycling at ≤80°C

>2000 hours
>5000 hours

Thermo-mechanically compliant 
bonds, higher glass transition 
temperature

Survivability -40°C Stabilized cluster structure design
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Multi-Component System with Functionalized Additives

Composite Membrane Concept
Improvements Made:

• Lower EW                        
(850  800-650)

• Higher MW

• Chemically stabilized 
polymer

• Smaller particle size       
(>80  30 nm)

• Increased proton density 
(1  2 mobile protons per 
molecule) & lower cost
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Technical Accomplishments
Major Achievements:

• Met conductivity targets with polymer membrane and 
composite membrane 

• Integrated lower-cost protonic conductivity enhancer 
(di-valent superacid, >80% lower cost)

• MEA Fabrication successful

• Met ASR target; cell performance progressing towards 
DOE targets
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Milestones
Milestone FY09 Goal FY10-11 

Goal
Current Status

Screen Nano-additive Incorporation 
Options

complete - complete  

Characterize Advanced Membrane complete - complete  

120°C Conductivity: Go/No-Go 100 mS/cm 
at 50% RH

- 100-148 mS/cm 

Provide membrane samples to UCF for 
MEA Fabrication

- Advanced 
Polymer

Lower cost 
mC2

complete 

complete 

MEA Stability test by UCF - 11-day test complete 
Select low-cost, long life membrane 
design

- High MW 
stabilized 
polymer

in progress

Cell testing at FCE - 1,000 hr in progress



10

Data From 2009 AMR

>3x Improved Membrane Conductivity vs. NRE-212

mC2 includes mono-
superacid and zeolite in 

advanced polymer

Adv. polymer
(720 EW)

(720 EW + 10% zeolite)

(720 EW + 10% zeolite + 2.7% superacid)
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• Conductivity of Polymer Alone Meets the DOE Target

• Study needed to accurately determine membrane resistance 
corrected for non-membrane ohmic resistance

Membrane Conductivity
FSEC  Data
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Estimated Membrane Resistance meets the DOE Target

Membrane Area Specific 
Resistance (ASR)
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Microstructural Characterization

Highly dispersed particles 
in mC2

AdditivePolymer Membrane

ElectrodesmC2

13

Electrodes
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Ex-situ Characterization

No significant effect observed on 
membrane mechanical properties 

induced by the presence of the zeolite

27Al Solid State Magic Angle Spinning NMR (27Al SS 
MAS/NMR) measurements were preformed with a 
Bruker 400 spectrometer spinning at 100 MHz.  
Aluminum nitrate was used as reference and a total 
of 1024 scans were collected.

Adsorption of di-valent superacid 
on nano-zeolite does not have a 

negative interaction

nano-zeolitenano-zeolite

Tensile Test ASTM D638 (23°C – 50% RH):

850EW 
Blank

850EW + 
2.7% Zeolite

850EW + 
10% Zeolite

850EW 
Blank

850EW + 
2.7% Zeolite

850EW + 
10% Zeolite

Values are average of three tests, with standard deviation in parenthesis 

33 nm 
mean

Demonstrated long-term (1 yr) nano-
zeolite particle size stability
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Fuel Cell Performance Analysis

B7 used different ionomer in electrodes (5% lower EW, chemically 
stabilized) than B2 and B3, leading to increased electrode and 

diffusion resistance 

 Electrode optimization required
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Fuel Cell Performance Analysis

B7 diffusion losses dominate 
performance more than 
membrane resistance 

 Illustrates importance of 
electrode ionomer optimization
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MEA Post-Test Analysis
Pinhole Data

Active Area Cell Inlet

Cell Outlet
B2 

After testing 
crossover = 1.0 mA/cm2

Active Area

Cell Outlet

Cell Inlet

B3 
After testing 

crossover = 77 mA/cm2

Active area

Cell Outlet

Cell inlet

B7
After testing 

crossover = 0.5 mA/cm2

Defect formation and hydrogen cross-over are lower with 
chemically stabilized polymer (B7)
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Comparison to DOE Targets

Characteristic
Units Target B1 B2 B3 B7

NRE 
211

2015
Area specific proton resistancec at:

120°C and 70 kPa water partial 
pressure Ohm cm2 ≤ 0.02 N/D 0.08 0.08 0.23 0.15
80°C and 38 kPa water partial 
pressure Ohm cm2 ≤ 0.02 N/D 0.02 0.02 0.05 0.02

Maximum Hydrogen cross-over a mA / cm2 2 N/D 1 0.95 0.48 0.76
Minimum electrical resistance b Ohm cm2 1000 N/D 1200 800 500 2100

Performance @ 0.8V (¼ Power) mA / cm2

mW / cm2
300
250

N/D
N/D

104
84

177
142

150
120

113
91

Performance @ rated power mW / cm2 1000 N/D 334 567 482 363

* Values are at 80oC unless otherwise noted
a. Measure in humidified H2/N2 at 25°C
b. Measure in humidified H2/N2 using LSV curve from 0.4 to 0.6 V at 80°C 
c. Determined by subtracting contact resistances from cell current interrupt values

Some targets met, good progress towards remaining targets
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Prime 
• FuelCell Energy, Inc.* (Industry): 

– Leading fuel cell developer for over 40 years 
Partners 
• University of Central Florida (University):

– Membrane characterization, MEA fabrication & evaluation
• Oak Ridge National Lab (Federal Laboratory):

– Membrane microstructural characterization
• Polymer Company* (Industry):

– Polymer and membrane fabrication, initial characterization
• Additive Partners* (Industry/University):

– Additives synthesis and characterization
• Consultant* (Industry):

– Additive synthesis and integration into mC2

* Within DOE H2 Program

Collaborations
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Proposed Future Work
• Fabricate most advanced polymer sample (lower 

EW, high MW, chemically stabilized)

• Use microstructural analysis data to guide mC2

formulations and treatment

• Explore reproducibility of the casts that show 
improvements exceeding the goals

• Support UCF in electrode optimization using FCE 
ionomer

• Conduct longer-term single cell testing at 95 and 
120°C (up to 1,000 hrs)
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Proposed Future Work
Upcoming Key Milestones:

• Select low-cost, long life membrane design   

• Readiness to meet DOE targets                   
(durability tests)

• Final Membrane/MEA evaluation by DOE
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Project Summary
• Developed MEA fabrication process with UCF that is 

compatible with mC2

• Microstructural analysis shows highly dispersed 
particles in mC2

• Improved membrane meets DOE conductivity and 
ASR targets at 120°C

• MEA has met targets for ASR (80°C), cross-over and 
electrical resistance

• Chemical stabilization results in improved 
membrane durability

• Cell performance analysis has identified electrode 
optimization opportunity 
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Project Summary Table
Characteristic Units

DOE 2015 
Target

FY10-11 
Result

Area specific proton resistancec at:
120°C and 70 kPa water partial pressure Ohm cm2 ≤ 0.02 0.08

80°C and 38 kPa water partial pressure Ohm cm2 ≤ 0.02 0.02 

Maximum Hydrogen cross-over a mA / cm2 2 0.95 

Minimum electrical resistance b Ohm cm2 1000 1200 

Performance @ 0.8V (¼ Power) mA / cm2

mW / cm2
300
250

177
142

Performance @ rated power mW / cm2 1000 567

*Values are at 80oC unless otherwise noted
a. Measure in humidified H2/N2 at 25°C
b. Measure in humidified H2/N2 using LSV curve from 0.4 to 0.6 V at 80°C 
c. Determined by subtracting contact resistances from cell current interrupt values
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