

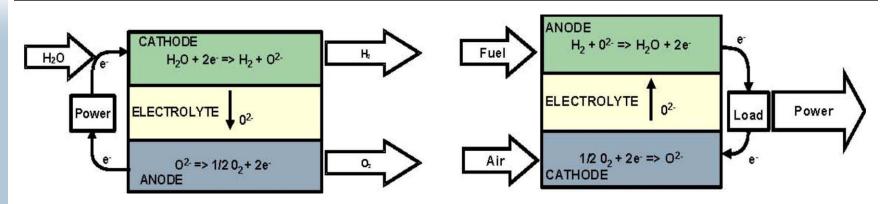
Advanced Materials for RSOFC Dual Mode Operation with Low Degradation

Eric Tang, Mark Richards, and Randy Petri (PI) Versa Power Systems Inc. 2011 DOE Hydrogen Program Review May 12, 2011 Washington, DC

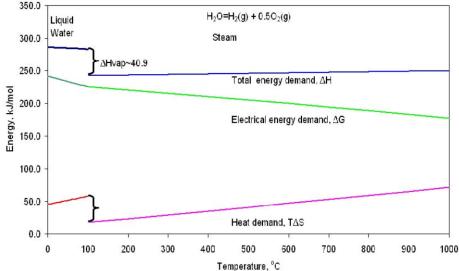
Project ID: FC042

Overview

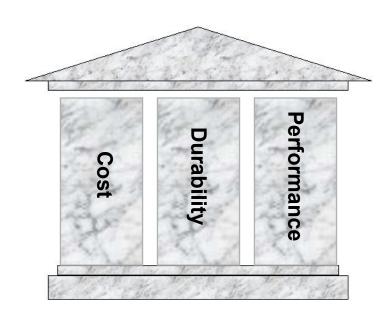
- Timeline
 - Start: September 2009
 - End: August 2011
 - 80% complete (ahead of schedule)


- Barriers
 - A. Durability
 - B: Cost
 - C. Performance

- Budget
 - \$1,994,618 total project
 - \$1,595,694 DOE share
 - \$398,924 VPS share
 - \$76,857 in FY10
 - \$518,837 in FY11

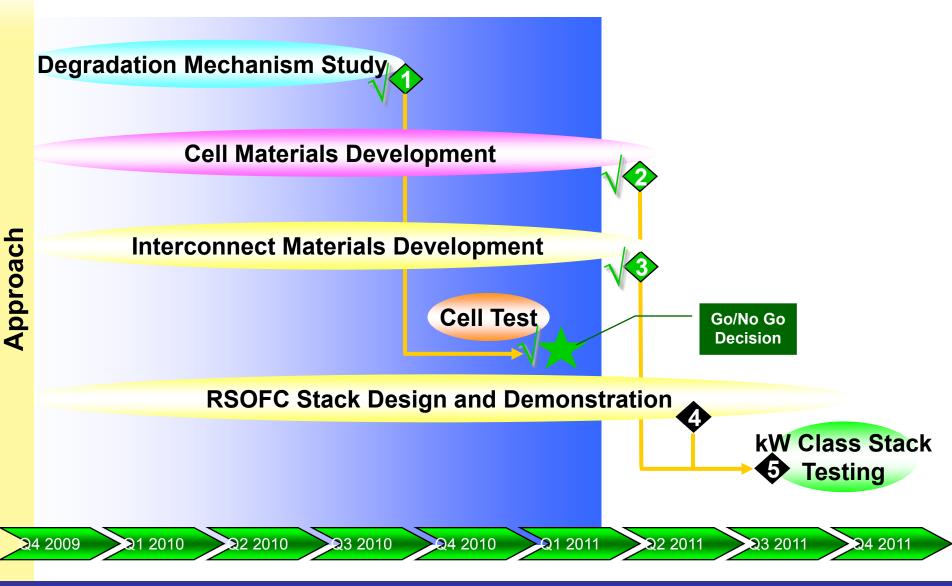

- Partners
 - Boeing
 - Idaho National Laboratory (INL)

Project Background


- Reversible Solid Oxide Fuel Cells (RSOFCs) are energy conversion devices: they are capable of operating in both power generation mode (SOFC) and electrolysis mode (SOEC)
- RSOFC can integrate renewable production of electricity and hydrogen when power generation and steam electrolysis are coupled in a system, which can turn intermittent solar and wind energy into "firm power"

Project Objectives

- To advance RSOFC stack technology in the areas of endurance and performance through RSOFC materials development and reversible stack design
- To meet the following performance targets in a kW-class RSOFC stack demonstration:
 - RSOFC dual mode operation of 1500 hours with more than ten SOFC/SOEC transitions
 - Performance (C), Durability (A)
 - Operating current density of more than 300 mA/cm² in both SOFC and SOEC modes
 - Cost (B), Performance (C)
 - Overall decay rate of less than 4% per 1000 hours of operation
 - Durability (A), Cost (B)


Relevance

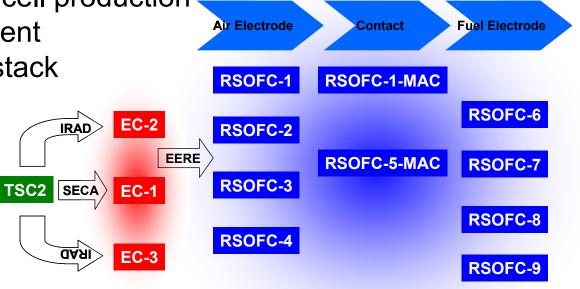
How Objectives Address Barriers

	Hurdle	Targets
Endurance	 Performance decay in SOEC mode is too high for RSOFC system development Materials system is not stable at SOEC operating mode with a decay rate more than 20% per 1000 hours Performance decay during transient between SOEC and SOFC is high 	 Reducing decay to under 4% per 1000 hours for both SOFC and SOEC Met endurance target in a 1000 hour single cell test (month 15) Meet endurance target in a 1500 hours kW-class stack (month 24) Demonstrate transient capability with more than 10 FC/EC transients
Performance	 Performance in SOEC mode is not sufficient for viable RSOFC system development ASR is more than 1.0 Ω-cm² at 750 C and below in SOEC mode 	 Improve performance at 750 C in SOEC mode by reducing ASR to less than 0.3 Ω-cm² Met performance technical target in a single cell test (month 15) Operate kW-class RSOFC stack at more than 300 mA/cm²

Project Timeline, Milestones, Decision Points

Decision Points and Milestones

- In February 2011, the second budget period effort was approved based on 1000 hour single cell test relative to the following performance and endurance metrics:
 - RSOFC area specific resistance of less than 0.3 $\Omega\text{-cm}^2$ in both SOFC and SOEC operating modes
 - Operating current density of more than 300 mA/cm² in both SOFC and SOEC modes
 - Overall decay rate of less than 4% per 1000 hours of operation
- Five technical milestones will be tracked and measured throughout the project
 - $\mathbf{\bullet}$
- Task 1: Completion of degradation mechanisms study of baseline cells (4th quarter)

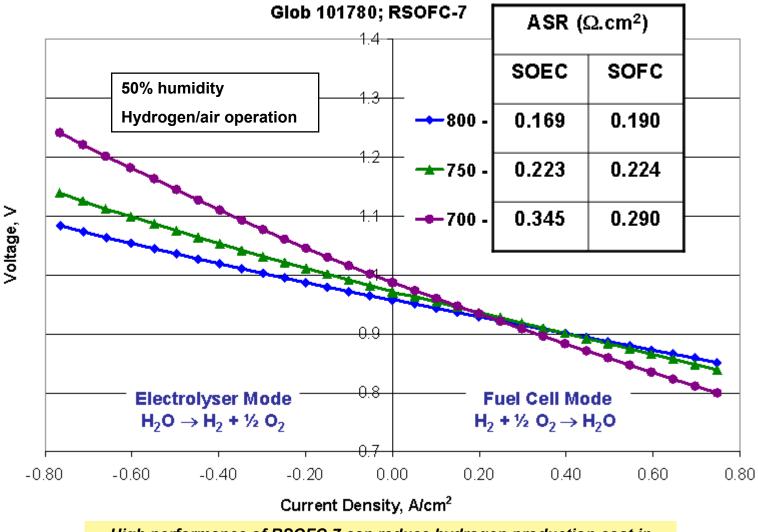

- Task 2: Completion of RSOFC cell materials selection (6th quarter)
- Task 3: Completion of RSOFC interconnect materials selection (6th quarter)

- Task 4: Completion of RSOFC stack design (7th quarter)
- Task 4: Starting end of the project RSOFC stack metrics test (8th quarter)

- Building on VPS' strong SOFC cell and stack baseline
- Leveraging cell and stack advancements from the DOE SECA SOFC project
- Addressing RSOFC degradation mechanisms in SOEC mode with innovative cell and stack repeat unit configurations
- Conducting parallel materials development activities and integrating them with cell production technology development
- Completing RSOFC stack and process designs to address durability, performance, and cost in both SOFC and SOEC operating modes

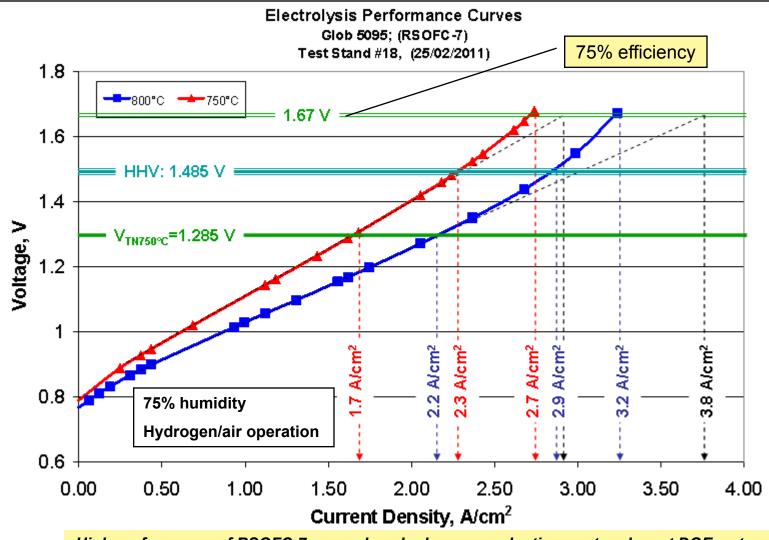
ersa Powe Svstems

RSOFC Cell Performance Development Status


				Cell Type	SOEC ASR (mΩ-cm²)	SOFC ASR (mΩ-cm²)
	Air Electrode	Contact Fuel	Electrode	TSC-2	375	180
TSC2	RSOFC-1 IRAD EC-2 RSOFC-2 EERE RSOFC-3	RSOFC-1-MAC RSOFC-6		EC-1	366	281
				EC-2	362	393
			SOFC-6	EC-3	278	251
		RSOFC-5-MAC RS	SOFC-7	RSOFC-1	308	245
		RS	OFC-8	RSOFC-1-MAC	251	245
RSOFC-4			RSOFC-2	285	295	
		RS	SOFC-9	RSOFC-3	386	283
				RSOFC-4	268	238
				RSOFC-5-MAC	341	253
				RSOFC-6	271	242
	8 cell types passed the performance criteria of ASR less than 300 m Ω -cm ² in both SOFC			RSOFC-7	223	224
				RSOFC-8	194	223
			Ċ	RSOFC-9	230	219
and SOEC modes at 750 C			 Fuel Cell (SOFC) ASR at 3% humidity and 750°C 			

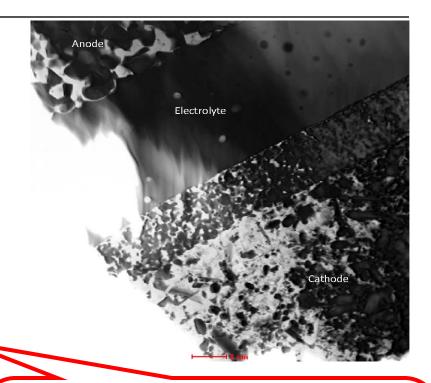
Fuel Cell (SOFC) ASR at 3% numidity and 750°C

• Electrolysis (SOEC) ASR at 50% humidity and 750°C


RSOFC-7 Cell Performance

High performance of RSOFC-7 can reduce hydrogen production cost in SOEC mode and improve efficiency in SOFC mode

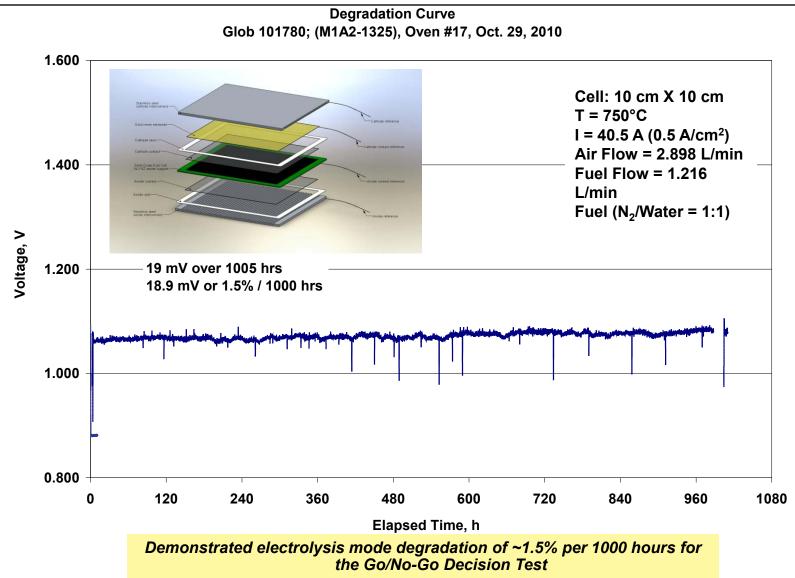
RSOFC-7 Cell Performance at Ultra-High Electrolysis Current Density


High performance of RSOFC-7 can reduce hydrogen production cost and meet DOE water electrolysis efficiency 2017 target of 75% at the same time

Electrolysis Degradation: Status

- 6 cell types have passed the degradation criteria of less than 4%/1000 hours in SOEC mode
- RSOFC-4 and RSOFC-7 passed both performance and degradation criteria

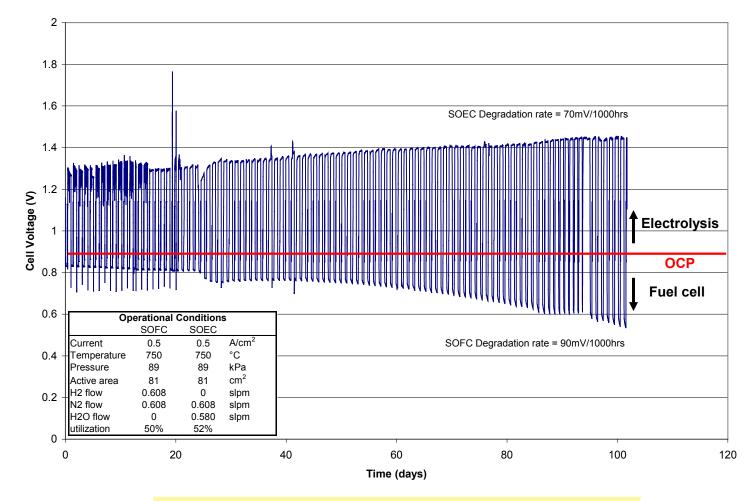
	Electrolysis (SOEC) Degradation			
Cell Type	mV / 1000 hrs	% / 1000 hrs	Duration (hrs)	
Target	< 50	< 4	> 1000	
TSC-2	91	7.3	2893	
EC-1	27	2.2	8465	
EC-2	~0	~0	2400	
EC-3	72	5.8	1792	
RSOFC-1	35	2.8	6472	
RSOFC-2	120	9.6	1152	
RSOFC-3	42	3.4	2653	
RSOFC-4	24	1.9	3618	
RSOFC-7	19	1.5	1005	



Post Test Analysis After 8000 Hours:

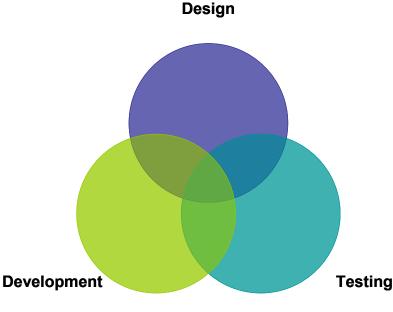
- All electrochemical functional layers fully intact, no delamination between electrodes and electrolyte
- No chemical impurities or contaminations, such as, Cr poisoning found in cathode (air electrode)
- No microstructure coarsening found

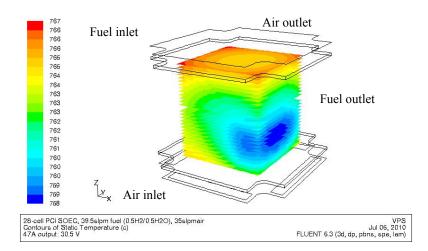
Steady-State Electrolysis Test of a RSOFC-7 Cell

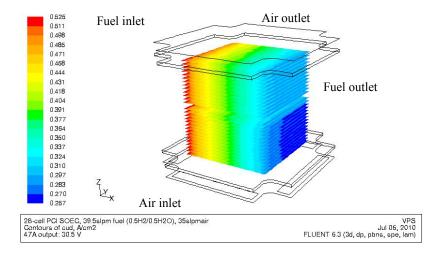

Summary of Go/No-Go Decision Points

Metric	Target	Status	
✓ Performance (Area specific resistance in both SOFC and SOEC operating modes)	< 0.3 Ω-cm²	0.223 Ω -cm ² in SOEC 0.224 Ω -cm ² in SOFC	
Degradation (Overall decay rate)	< 4% per 1000 hours	~1.5% per 1000 hours	
✓ Operating Duration	> 1000 hours	1005 hours (as of Go/No-Go Decision)	
Operating Current Density	> 300 mA/cm ²	500 mA/cm ²	

Single Cell Electrolysis/Fuel Cell Cycling Test

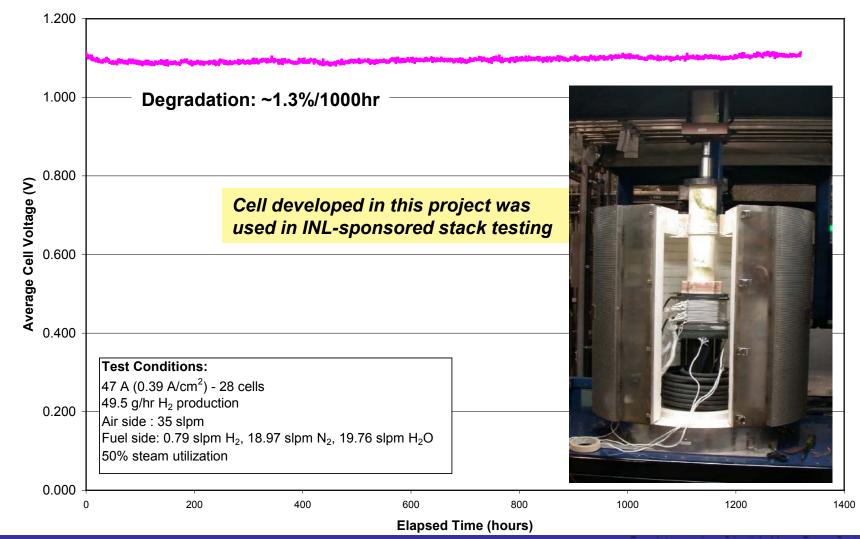

GLOB 101659 - SOFC-SOEC Cycles TSC-2 Cell


Demonstrated 100 electrolysis/fuel cell mode cycles



SOEC Stack Design and Development

- Developed fully integrated CFD model for RSOFC stack
- Excellent stack thermal profile at SOEC operating mode
- Investigated local current density and chemical species concentration in SOEC operating conditions
- Electrolysis kinetics yet to be verified and calibrated in stack testing



kW-Class Stack Testing for INL

GT056019-0150 TC1 Hold - 23/Jun/10 28cell PCI- INL; Test Stand 1

Collaborations

- Boeing
 - Collaborated on and funded initial RSOFC development work through both Boeing and DARPA funded efforts
 - DARPA Vulture Phase 2 project was started October 2011
 - RSOFC stack integration into full reversible system
 - Stack design and development for reduced cost and weight
- ► INL
 - Eventual integration of SOEC technology for hydrogen production with Next Generation High Temperature Nuclear Reactor
 - Demonstrated suitability of VPS SOEC technology for this application at the kW-class stack level

Proposed Future Work

- ► FY2011
 - Complete the final project metric test with a kW-class RSOFC stack
 - Complete the additional cell development scope of advancing performance and degradation beyond the original project target
- Potential Additional Scope for FY2011:
 - Complete RSOFC system economic study
 - Explore the option of developing larger (up to 20 kW) stack for RSOFC operation
 - Explore the option of developing a RSOFC system integrated with renewable energy sources, such as solar and wind

Summary

Relevance	RSOFC can integrate renewable production of electricity and hydrogen when power generation and steam electrolysis are coupled in a system, which can turn intermittent solar and wind energy into "firm power"
Approach	Developing high performance and low degradation RSOFC cell and stack technology is critical for the reversible SOFC/SOEC system
Technical Progress	 11 types of RSOFC cells were developed in the project. Two types of cells (RSOFC-4 and RSOFC-7) exceeded both performance and degradation criteria A steady-state single cell test of RSOFC-7 has run in electrolysis with a degradation rate of about 1.5% per 1000 hours A baseline 28-cell stack (kW-class) test has run in electrolysis for over 1000 hours at about 1.3% per 1000 hours degradation rate
Collaboration	Boeing/DARPA, SECA, and INL
Proposed Future Research	In addition to executing the original project scope, additional development activities are under consideration to accelerate RSOFC technology development for integrating with renewable energy sources, such as solar and wind.