2011 DOE Hydrogen and Fuel Cells Program Review May 9-13, 2011, Washington, D.C.

Resonance-Stabilized Anion Exchange Polymer Electrolytes

Yu Seung Kim

(yskim@lanl.gov)

Los Alamos National Laboratory Los Alamos, NM, 87545

Project ID: FC043

UNCLASSIFIED

This presentation does not contain any proprietary, confidential or otherwise restricted information.

<u>Overview</u>

Timeline

- Project start September 2009
- Project end September 2011
- Percent complete (as of March 5, 2011) – 80%
 - Polymer & ionomer synthesis (90%)
 - Catalyst synthesis (70%)
 - MEA processing & Testing (60%)

Budget

- Total Project Funding: \$ 1,320k
- Funding for FY 10: \$ 528k
- Funding for FY 11: 330k
 No cost share

Barriers

- B. Cost
- C. Electrode Performance
- A. Durability

Project Lead:

Collaborators:

- Yu Seung Kim (PI)
- Dae Sik Kim

Partners

- Andrea Labouriau
- Piotr Zelenay
- Hoon Jung
- Cy Fujimoto (Ext. PI)
- Michael Hibbs
- Chuck Hays (Ext. PI)
- Daneil Konopka
- Michael A. Johnson
- Adam Kisor
- Poy<mark>an Bahrami</mark>
- Michael Errico

Interactions:

- Cellera Technologies (S. Gottesfeld)
- Ovonic Fuel Cell Company (R. Privette)
- Cornell University (Geoff Coates)
- U. Southern California (S. Narayan)

Relevance – Objective and Technical Target

<u>Objectives</u>

- Demonstrate an improved alkaline membrane fuel cell (AMFC) performance using novel *polymer electrolytes* and *non-precious metal catalysts*.
- FY 10: Anion exchange polymer electrolytes
- FY 11: Catalyst development and integration of AMFC MEAs

Barriers and FY 10 Status

ISSUES	Technical Barriers	Technical Target	FY 2010 status*
Membrane	Conductivity Stability Mechanical property	σ: > 50 mS/cm Stability : > 500 h in NaOH soln. Yield stress: > 10 MPa, Strain : > 10%	× (32-39 mS/cm) × (382 h, 30% loss) × ×
lonomer	Conductivity	σ: > 50 mS/cm	× (40 mS/cm)
	Stability	Stability : > 500 h in NaOH soln.	×
	Gas permeability	Perfluorinated ionomer	√
	Cationomer interface	Cation optimization	×
Electro-	Non-precious metal	Non platinum based cat.	×
catalysts	ORR activities	> 0.85 V (E _{1/2})	×

UNCLASSIFIED

2011 DOE Hydrogen and Fuel Cells Program Review

* Y.S.Kim 2010 DOE AMR meeting June 7-11 (2010)

Relevance – Impact on DOE Hydrogen & Fuel Cell Program

a: P. Zelenay, 2010 DOE AMR Meeting, June 7-11, 2010; **b**: Y. Yan et al., *Angewandte Chem*. **121**, 6621-6624, (2009); Varcoe et al., *Chem*. *Mater*. **19**, 2686-2693, (2007); Varcoe et al., *Electrochem*. *Comm*. **8**, 839-843, (2006); **c**: Lu et al. *PNAS*, **105**, 20611-20614, (2008);

UNCLASSIFIED

Approach – Hydrocarbon Based Anion Exchange Membranes

2011 DOE Hydrogen and Fuel Cells Program Review

NATIONAL LABORATOR

Synthesis of Poly(Phenylene) Anion Exchange Membranes

- ✓ Extremely good chemical stability due to the wholly aromatic structure
- ✓ No ether or fluorine linkages which are susceptible to nucleophilic degradation
- ✓ Number average molecular weight is ~ 35,000 gm/mol
- ✓ **Uniform distribution of tri-methyl functional groups** reduces water uptake at a given IEC

Structure analysis of these polymers is provided in the supplement slide (slide no. 23)

Water Uptake and Conductivity of Aminated TMPP

IECs measured by Volhard titration of bromide ions Conductivity measure in degassed liquid water

✓ AEM selected based on conductivity and water uptake

✓ Degree of functionality (number of $-CH_2Br$ groups/repeat unit) is typically 2-2.5

✓ Selected AEM meets the conductivity and water uptake target for 2011

UNCLASSIFIED

Mechanical Property and Stability of Aminated TMPP

- ✓ Mechanical properties of poly(phenylene) did not change with different NaOH treatment
- \checkmark The mechanical stability of poly(phenylene)s was superior to those of poly(arylene ether)s
- ✓ The IEC of poly(phenylene)s did not change over 700 h in 4 M NaOH soln. at 60°C
- ✓ Further improving mechanical properties of poly(phenylene) is under investigation

Approach – Perfluorinated Anion Exchange Ionomers

EST. 1943 -

Synthesis of Guanidinium based Perfluorinated Ionomers

Perfluorinated backbone & side chain

- ✓ Provide high gas permeability
- ✓ Inert to electro-catalytic reaction
- ✓ Chemically and oxidative stability

Spacer

✓ Cation stability by increasing electron density

Cation

- ✓ Cation stability by resonance structure
- ✓ Provide highly active catalyst-electrolyte interface

* LANL patent pending (2011)

Structure analysis of these polymers is provided in the supplement slide (slide no. 24)

UNCLASSIFIED

Effect of Electron Density on Cation Stability

The cation stability of perfluorinated AEM significantly improved by the electron donating spacer

✓ This is a proof of principle for utilizing perfluorinated ionomer for AMFC

UNCLASSIFIED

Approach – Non-Precious Metal ORR Electrocatalysts

2011 DOE Hydrogen and Fuel Cells Program Review

FST 1943

ORR and HER Activities of Pt and Pd Catalysts in TMG

 0.1 M HClO_4

1 M KOH

0.1 M TMG

HER Activity

✓ Performed electrochemical tests via RDE on elemental electrodes in 0.1 M TMG + H₂O electrolyte

✓ Pt, Pd, tested so far, ORR current densities in TMG rival those in KOH

✓ RDE measurements of the HER on Pt in 0.1 M TMG indicates a good catalytic activities at the interface with TMG electrolytes

Pd

UNCLASSIFIED

-15.3

-66.3

-50.9

Jet Propulsion Laboratory California Institute of Technology Pasadena, California 13

Synthesis of Ag-Pt based Binary Electro-catalysts

2011 DOE Hydrogen and Fuel Cells Program Review

NATIONAL LABORATOR

ORR Activity of M-N-C Catalysts in NaOH Solution

✓ Dai et al. reported high activity of N doped carbon nanotube catalyst in alkaline solutions (supplementary slide no 26)

✓ Highly-active and durable M-N-C catalyst was prepared using commercial carbon black rather than expensive CNT as a starting material

Excellent ORR activities with M-N-C catalyst was obtained; E 1/2 increased with catalyst loading

Onset potential of M- N-C catalyst higher than that of Pt/C

UNCLASSIFIED

Durability of M-N-C Catalysts during Potential Cycling

RDE: 0.1 M NaOH; 900 rpm; room temperature; steady state potential (OCP, 120 s, 20 mV steps, 25 s/step); cycling condition, 0.6 to 1.0 V, 50 mV s⁻¹ in saturated O₂

Excellent stability of M-N-C catalysts (ORR activities of M-N-C catalysts increased with potential cycling)

E_{1/2} of M-N-C catalyst was 0.95 V while E_{1/2} of Pt/C catalyst was 0.90 V after 5,000 cycles

ORR activities of M-N-C Catalysts in Different Electrolytes

✓ The ORR activity of the M-N-C catalyst (0.2 mg/cm²) in TMG is superior to that in tetraalkylammonium

✓ The onset potential of the M-N-C catalyst in TMG is equivalent to that of the Pt/C in NaOH.

H₂/O₂ Performance of Alkaline Membrane Fuel Cells

Catalyst: **Pt** black (3 mg/cm²), Cell temp. 60° C, Cathode humidification: 60° C, back pressure: 30 psig, high stoic. Catalyst: ionomer weight composition (9:1, not optimized); MEAs were prepared from direct painting.

lonomer (IEC = 0.74 meq./g, σ = 20 mS/cm)

- → Mass transport issue due to flooding
- \rightarrow Possibly poor cation catalyst structure

Partial hydrated conditions (anode humid. temp.: 50°C)

- → Improved performance with removing mass transport issue
- \rightarrow Poor membrane hydration/remaining issue with cation

Perfluorinated ionomer (anode humid. temp.: 60°C)

- \rightarrow Improved performance with removing mass transport issue
- \rightarrow No membrane hydration problem
- \rightarrow Maximum power density:
 - 236 (at 60°C) and 278 mW/cm² (at 80°C)

Collaborations

Sub Contractors

- <u>Sandia National Laboratories</u>: Polymer Synthesis, extensive collaboration.
- <u>Jet Propulsion Laboratory</u>: Electrode Preparation, extensive collaboration.

Industry

- <u>Ovonic Fuel Cell Company (R. Privette)</u>: Material characterization, occasional.
- <u>Cellera Inc.</u> (S. Gottesfeld): Electrode design, occasional.

University

- <u>Cornell University</u> (Geoff Coates): Polymer synthesis, occasional.
- <u>University of Southern California</u> (S. Narayan): Electro-catalysis, occasional.

Federal/National Laboratory

- Los Alamos National Laboratory (P. Zelenay) through DOE Advanced Catalyst Program: Catalyst issue in alkaline fuel cells, moderate interaction.
- <u>Canada NRC (M. Guiver) through DOE Technical Assistant Program: Polymer</u> synthesis, occasional.
- <u>National Renewable Energy Laboratory</u> (B. Pivovar) through DOE BES program: cation stability, occasional.

Summary

Anion Exchange Membrane: Aminated poly(phenylene)		Target	March 1, 2010	March 1, 2011
Conductivity (mS/cm) Water uptake (wt.%) Chemical stability in NaOH soln. (h) Yield stress (MPa)/strain (%)		> 50 < 10 > 500 > 10/>10	32ª 9-46 < 1 4/4	51-59 ^b 73-98 > 670 16/8
Anion Exchange lonome functionalized perfluori	Target	March 1, 2010	March 1, 2011	
Conductivity (m Chemical stability in N	> 50 > 500	40 < 1	<mark>20</mark> ^b > 120	
ORR catalyst: M-N-C catal	Target	March 1, 2010	March 1, 2011	
E _{1/2} potential (V)	NaOH or KOH	> 0.85	-	0.87
	TMG	> 0.75	-	0.77
AMFC perform	Target	March 1, 2010	March 1, 2011	
Maximum power density	Pt based	> 300	-	280
(mW/cm²)	Non-Pt based	< 200	-	-
Durability under continuous o	> 500	-	-	

^a Measured at 80°C: ^{b,c} Measured at 30°C; ^d at 60°C

Future Research (April 1- Sep. 30, 2011)

- Poly(phenylene) anion exchange membranes (SNL)
 - Synthesis of high MW membranes (target MW > 50,000 g/mol)

Perfluorinated ionomer (LANL)

- Synthesis of high IEC polymers (target IEC = 0.9 meq./g)
- Stability study

M-N-C catalysts (LANL)

– Effect of cation on ORR mechanism of M-N-C catalysts

Ag based catalysts (JPL)

ORR activity of Ag catalyst in TMG solution

MEA fabrication (LANL and JPL)

- Optimization of electrode composition and MEA processing condition

Fuel cell testing (LANL)

- H_2/O_2 and H_2/air conditions
- Durability test (target: 500 h with < 10% performance loss)

Technical Back-up Slides

UNCLASSIFIED

¹H NMR of Aminated TMPP

Protons a, b, and c are represented by groups of peaks due to varying probabilities for methyl and ammonium groups at each of four positions on each repeat unit.

UNCLASSIFIED

Sandia National Laboratories

FT-IR of PFGB

XRD of Ag-Pt Array

Synthesized two multi-electrode arrays for electrochemical tests In both libraries, Pt-Ag and Ni-Ag, the thin films are single phase - All films exhibit a strong (111) crystallographic orientation - No chemical ordering

25

ORR Enhancement with N Doping into Carbon in Alkaline Media

Dai et al., Science 323 (2009) 760

