2011 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Engineered Nano-scale Ceramic Supports for PEM Fuel Cells

Project ID # FC044

DOE Technology Development Manager : Nancy Garland

Principal Investigator/Presenter : Eric L. Brosha

Karen Blackmore, Eric L. Brosha, Anthony Burrell, Lior Elbaz,

Neil Henson,

Los Alamos National Laboratory

May 9-13, 2011

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Fuel Cell Technologies

Overview

Timeline

- Project start : September 2009
- Project end : September 2013
- Percent complete (as of May 2011) : 41%

Budget

- Total project funding : \$500K/yr
 - DOE \$425K
 - UNM (sub) \$75K
- Received FY10: \$405K
- Funding Received (anticipated) FY11: \$250K

<u>Technical Barriers Addressed</u>²

- A. Durability (Pt sintering, corrosion loss, effects from load-cycling & high potential)
- B. Cost (Better Pt utilization balanced by cost difference of new support)
- c. Electrode Performance (Pt sintering, corrosion loss, and loss of ESA)

Partners

- LANL (Project Lead)
- UNM
- ORNL (no-cost partner)
- SDC Materials Inc. (industrial input & manufacturing sounding board, materials exchange)

Los Alamos
 NATIONAL LABORATORY

2. (Multi-Year Research, Development and Demonstration Plan, Section 3.4.4 "Technical Challenges") *From http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf

Relevance - Objectives

- Project Objective: Develop a ceramic alternative to carbon material supports for a polymer electrolyte fuel cell cathode.
- Ceramic support must:
 - have enhanced resistance to corrosion and Pt coalescence.
 - preserve positive attributes of carbon such as cost, surface area, and conductivity.
 - be compatible with present MEA architecture & preparation methods.
- Materials properties goals include:
 - high surface area
 - high Pt utilization
 - enhanced Pt–support interaction
 - adequate electronic conductivity
 - resistance to corrosion
 - synthesis method / procedure amenable to scale-up
 - reasonable synthesis costs

 Technical performance and lifetime targets now in place for Pt/C PEMFC catalysts naturally extend to Pt/ceramic catalysts.

1. (Multi-Year Research, Development and Demonstration Plan, Table 3.4.12) *From http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf

Approach: Focus on Select Support Candidate Materials

- Transition metal nitrides: Mo-N, Zr-N
 - Corrosion resistance, high electronic conductivity, catalytic properties

Sub-stoichiometric titania (TiO_{2-x})

- Ti₄O₇ (Magnéli phase)
- High electronic conductivity, refractory, stable in acid media
- Reports of strong metal-support interactions with noble metals
- Resistance to oxidation and demonstrated electro-catalytic activity for both hydrogen and oxygen / Pt
- TiO: conductive but not as high as Magnéli phase

Conductive metal oxides : NbO₂ and RuO₂ (UNM)

- Demonstrated corrosion stability (UNM)
- Highly dispersed Pt on conductive mesoporous spheres can be synthesized in a single step process (UNM)

Approach: Experimental Synthesis Methods

- Polymer assisted deposition (PAD) nitrides and sub-oxides of titania.
 - PAD precursor routes to produce ceramic materials with high surface area.
 - Powders, bulk catalysts prepared by forming metal organic get followed by pyrolysis under controlled atmospheres
 - Molybdenum nitrides: Ammonium molybdate/polyethylene imine (with EDTA) to produce a gel (100°C) followed by 950°C anneal in 4-6%H₂ and N₂
- Theory/Modeling support to aid experimental effort to provide data on stability of the support in absence of Pt particles and nature of Pt-support interactions
 - Surface/cluster models useful to predict effects of particle size reduction, conductivity.
 - Study nature of Pt binding sites, interaction energy, etc.
- Conductive NbO₂ and NbRu_vO_z supports / specific target materials (UNM)
 - Aerosol spray pyrolysis of alcohol solutions with addition of pluronic block copolymers as templating agent followed by post-synthesis acid etch
 - Apply methods for nitrides and sub-oxides of titania

Approach: FY10 & FY11 Milestones / Go-NoGo Decisions

- As of AMR meeting date: Project is On Schedule to meet 2nd year milestones and candidate materials have been identified. <u>Original goals of project are being met.</u>
- Go Decision made for Mo₂N supports synthesized via PAD approach: ahead of schedule.
 - Q8 target moved up to Q5-Q6.
- Evaluation of titania supports prepared by PAD approach: ahead of schedule.
 - Q6 targets moved up to Q3-Q4
- Go/NoGo decision on hexaboride supports: *ahead of schedule*.
 - No-Go: Q6 decision moved up to Q4
 - Unable to synthesis using A-T-P process (Q4)
 - PAD process produced only small amounts of LaB_6 (Q6)
- Performance evaluation of Pt/NbRu_vO_z catalysts: ahead of schedule.
 - **No-Go** : poor activity due to formation of NbO_x passivation layer on Pt (Q6)
- Report on corrosion/durability (FY11, Q8): On schedule.
- Process decision on TiO_{2-x} supports (FY11, Q8): On schedule.

Fuel Cell Technologies

Technical Accomplishments and Progress: Nano-sized Mo-Nitride Ceramics Produced (Previously Reported 2010 AMR)

- Molybdenum Nitride Synthesis :
 - Mo₂N cubic phase.
 - XRD: average crystallite sizes ca. 1 2nm.
 - 700 950°C pyrolysis T with 950°C optimum
- BET: 250 300m²/g typical with SA as high as 500m²/g recorded.
- Electronic conductivity (resistance)
 - 2-pt measurement, powder measured by compacted powder in ¼" dia. fixture with uniaxial applied force.
 - Mo₂N (950°C): **3.3**Ω
 - Vulcan XC-72R measured in same fixture: 1.8Ω
- ORNL TEM Analysis
 - < 2nm particle sizes with agglomerates of nanoparticles, ~0.2µm to over 2µm
 - Highly crystalline structure consistent with cubic Mo₂N and nicely faceted

Technical Accomplishments and Progress: Pt/Mo₂N : ORR Activity Shown/Improved from FY10

- Platinum on Mo₂N shows the expected electrochemical features.
- The support does not seem to interfere with the activity of the Pt towards the ORR.
- ORR catalysis mechanism is not affected by the support.

- The reversible (2e⁻ process) redox couple observed at E=0.44V is attributed to the Mo₂N and not to the carbon precursor (The process is TBD).
- Higher capacitance currents observed with the Mo₂N due to higher surface area.
- Higher EASA was obtained with the Mo₂N-Pt sample.

Operated by Los Alamos National Security, LLC for NNSA

Technical Accomplishments and Progress : Source, Properties, and Influence of Carbon Remnants

- Early EDAX measurements of Mo₂N suggested Carbon confirmed with PAD TiO.
- Sample prepared without Mo source: PEI/EDTA pyrolyzed at 950°C; same procedure used for Mo₂N synthesis.
- BET surface area is low (over 100x lower) compared to Mo₂N; 1.7 m²/g
- Confirms broad peak at 25° in all XRD data is from the carbon remnants.
- Platinized carbon residue not a significant contributor to activity.

Technical Accomplishments and Progress : Anneal Mo₂N Longer in H₂ to remove carbon? - XRD post TGA/MS experiment

1000 100 3E-10 ---- Temp, 800 90 2.5E-10 emperature, 600 2E-10 Veight % 80 Ion Current/A 400 1.5E-10 70 1E-10 200 TGA, wt% 60 5E-11 0 100 200 300 400 0 Time, min 100 200 Time/min N⁺⁺ signal confirms N₂ release. 101) Mo₂C As prepared (950°C) - 1100°C, 10 min, 6%H 800°C, 6 hrs, 6%H Мо arb int (cps) Mo₂N (002) (110) (102) Mo_2N Mo₂C (100) Mo₂C Mo₂C Mo₂C 30 40 50 60 20 Two-Theta (degrees)

Fuel Cell Technologies

28 ion current comprised of both CO and N₂.

16 - Ion Current/A

15 - Ion Current/A 2 - Ion Current/

400

300

(103)

Mo₂C 002

70

10 K/min in 6%H₂ and isotherm 800°C for 6 hrs with MID scan

Water formation evident reacting with carbon to form CO with indications of trace ammonia.

- Release of N₂ commensurate with decomposition of Mo₂N.
- Prolonged anneal ca. synthesis temperature fosters Mo₂C formation at the expense of Mo₂N.
- Residual carbon remains.

Operated by Los Alamos National Security, LLC for NNSA

(112 (201

Mo₂C

80

Technical Accomplishments and Progress : Electrochemical Studies Methodology

Technical Accomplishments and Progress: *In-situ* Pt-Mo₂N Formation Using PAD Process Leads to Stable, Ultra-high Pt Dispersions

- XRF confirms Pt is present in sample.
- ORNL TEM analysis:
 - 10 at% Pt homogeneously distributed across/within Mo₂N but *not as individual nano-particles*.

Pt ave. crystallite size increases to 40Å from 12Å

Technical Accomplishments and Progress : More Aggressive Thermal Treatment and Evidence of Enhanced Pt-Support Interaction

- Repeat of TGA/MS experiments to remove excess C in presence of H₂ produce similar results: Most C reacts with Mo to form Mo₂C. No methane formation!
- After TGA experiments in 6%H₂, XRD data shows formation of Mo₂C as expected and Mo₂N sintering.

Fuel Cell Technologies

Technical Accomplishments and Progress : *In-situ* Pt/Mo₂N – Electrochemical Activity from Multiple Catalytic Sites Post Anneal

- Although not seen in XRD, Pt was observed using electrochemistry.
- New redox couple was observed when Pt was imbedded in the Mo₂N (TBD).
- The imbedded Pt shows catalytic activity lower than deposited Pt.
- Annealing of the sample is necessary in order to obtain ORR activity.

-1.5 + 0.0

0.3

0.6

E(V) vs. RHE

Fuel Cell Technologies

NNS®

1.2

imbedded Pt (annealed)+20wt % Pt

0.9

Operated by Los Alamos National Security, LLC for NNSA

Technical Accomplishments and Progress : Electrochemistry of Mo₂C with / without Pt

- Mo₂C devoid of Pt shows instability. The growth of the redox peaks continues with cycling.
- After adding Pt the support is stable, the Pt activity is as expected both in CV of dearated solutions and RRDE measurements.

Technical Accomplishments and Progress : More Aggressive Thermal Treatment and Evidence of Enhanced Pt-Support Interaction, 40wt%Pt

- Mo₂N-C prepared with 40 wt % Pt incorporated into support
 - Pyrolyzed at 950°C
 - 290m²/g as delivered
- At 40 wt%, now see Pt in XRD
 - Small relative Pt (111)
 intensity
 - 2 types of Pt?
- Repeat TGA/MS exp's: no methane formation observed.
- Full profile fitting of the XRD data indicate Mo₂N grain growth, Mo₂C formation and an increase in Pt average crystallite size.

Presently trying to: a) achieve required activity in the as-prepared Pt-Mo₂N-C by studying the properties of a range of Pt doping: 5 - 40 wt% and b) use Pt nucleated during PAD pyrolysis and Mo₂N-C formation as anchors for subsequent Pt disposition.

Fuel Cell Technologies

Technical Accomplishments and Progress : Thermal Stability / Studies indicate Pt -Mo₂N interaction stronger than Pt -MoO₃

Technical Accomplishments and Progress: Computational Studies of Thin-Film Molybdenum Nitride Supports for Platinum Electrodes

• Aims for FY11 :

- Focus on dominant γ -Mo₂N identified from characterization of samples
- Construct structural models for phase effect of non-stoichiometry and defect structures
- Calculate binding energies for platinum mono-layers on surface models
- Calculate trends in predicted over-potential for models

Approach :

Calculations to be performed using plane wave periodic density functional theory calculations (VASP software)

NaCl structure with half of the nitrogen sites vacant

nitrogen vacancies in layers

Mo-brown, N-blue

creates MoN and Mo-rich surfaces for Pt adhesion

Fuel Cell Technologies

Operated by Los Alamos National Security, LLC for NNSA

A structural model of γ -Mo₂N

Technical Accomplishments and Progress: Platinum strongly bound to defective surface

identify most favourable sites for single Pt atoms B (4-fold) > C (bridge) > A (on-top)
and construct a monolayer based on these results

Mo-brown, N-blue, Pt-green

• nitrogen depleted surface layer promotes stronger binding of platinum compared to other defect models, and other Mo_xN_y phases.

• reduces calculated overpotential for oxygen reduction reaction.

Fuel Cell Technologies

Collaborations / Distribution of Technical Personnel

(Prime – Fed. Lab. within DOE H_2 prg.)

(Sub - University within DOE H₂ prg.)

 \geq

(Sub – Fed. Lab. within DOE H_2 prg.)

- Materials characterization: XRD, XRF and thermal analysis; Eric Brosha (PI)
- > Electrochemical characterization, ink and MEA prep; Lior Elbaz
- PAD synthesis, high surface area powder supports; Anthony Burrell and Karen Blackmore
- Support Modeling; Neil Henson
- Conductive aerosol derived supports; Timothy Ward and Rosalba Rincon
 - XPS characterization; Kateryna Artushkova
- TEM Characterization; Karren More (PI special materials)
- Discussions about manufacturing ceramic supports, materials exchanges, characterization of commercial materials and exchange of data; Rich Zvosec

Proposed Future Work – FY10 Q4 and into FY11

- Characterization and testing of support materials (on-going throughout the entire project).
- Q8 (M): report on durability of the Pt/Mo₂N catalyst; electrochemical observations with extended CV cycling.
- Scale-up amount of PAD-produced Mo₂N and prepare inks and prepare MEAs.
- Begin fuel cell testing and lifetime-durability observations with Pt/Mo₂N-C.
- Resume sub-oxide titania support work: CV characterization.
- New UNM focus: High surface area Mo₂N and TiO_{2-x} through aerosol synthesis route (primary)/characterization.
- Tech Team meeting participation (Nov '11).
- Publications.

Fuel Cell Technologies

Summary of Technical Progress

- Carbon is present from PAD process and, unless it can removed during initial pyrolysis step, will be present if the PAD process is used to form high SA powders
 - Measurements: ca. 40-50 wt% residual Carbon
 - It is not clear yet what role the carbon is/will play as a catalyst support
- Mo₂N-C possesses required SA and electronic conductivity for fuel cell use
- Required stability in acid conditions and under potential cycling
- 20 wt% Pt/Mo₂N-C (incipient wetness) has comparable activity for ORR as ETEK
- Pt appears to be associated with Mo₂N and not the residual carbon
 - TGA/MS experiments
 - ORNL TEM characterization
 - CV experiments
- Experimental evidence collected to date indicates a stronger Pt-support interaction than with Pt-C catalysts - backed by modeling results
- Mo₂N-C although not completely understood, is acceptable to move forward to MEA prep and FC testing : "GO"

Fuel Cell Technologies

Technical Back Up Slides

Fuel Cell Technologies

Mo₂N & TiO_{2-x} supports via PAD

Mo₂N/C 950°C

- Surface area as high as 500 m²/g; 250-300 m²/g typical
- SEM analysis of Mo-N prepared via PAD.
- Piece of ceramic foam, crushed & prior to grinding using mortar/pestle

- TEM from ORNL: Very small particle sizes (< 2nm).
- Highly crystalline structure consistent with cubic Mo₂N and nicely faceted.
- Presence of agglomerates of nano-particles and these can be quite large, ~0.2µm to over 2µm.
- "Unclear what is holding particles together." carbonaceous materials resulting from the PAD precursor?

XRD: TiO_{2-x} supports via PAD

- PAD approach modified for titania work.
- Black, conductive oxides produced without need for post reaction, high temperature H₂ reduction.
- Flow rate and purge time affects resulting phase.
 - Ti₄O₇ yet produced
- Full profile analysis indicates average crystallite sizes ~ 40-42Å for TiO and est. 70Å for Black TiO₂ phase.
- **a**_{TiO} = 4.191(2) Å
 - Lit: = 4.177 Å
 - PDF#008-0117

CV and RRDE Characterization : Pt/TiO₂ and Pt/TiO

CV and **RRDE** Characterization : pyrolyzed **PEI-EDTA + Pt**

Technical Accomplishments and Progress: Mo₂N – Electrochemical Characterization Indicates Stable Support/Improved from FY10

- The electrochemistry of the heat treated Mo₂N was studied in 0.5M H₂SO₄.
- The Mo₂N devoid of Pt catalyst shows no activity toward ORR.
- The support shows stability in acidic medium (no effect was observed while running multiple CV's with the support).

