

2010 DOE Hydrogen Program

The Effects of Impurities on Fuel Cell Performance and Durability

May 9, 2011

Trent M. Molter, Ph.D.
Associate Research Professor & Business Development Officer
Center for Clean Energy Engineering
The University of Connecticut

(860) 486-2898 tmolter@engr.uconn.edu

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID FC047

Overview

Timeline

- Start March 2007
- End August 2011
- ~90% Complete

Budget

- Total Project Funding \$2,481,917
 - DOE Share \$1,985,533
 - Contractor Share \$496,384
- Funding for FY10 \$399K
- Funding for FY11 \$117K

Barriers

 Establish Tolerance to Fuel and System Derived Impurities

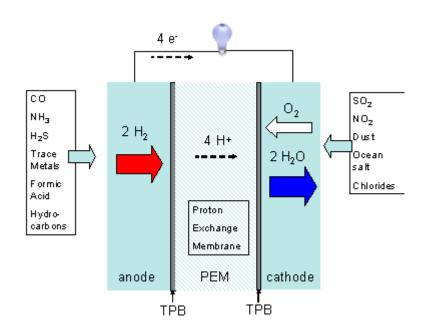
Partners

- United Technologies Hamilton Sundstrand – Historical Impurity Data
- FuelCell Energy, Inc. Impurity Test Support
- UConn C2E2 Project Management

Relevance - Objectives

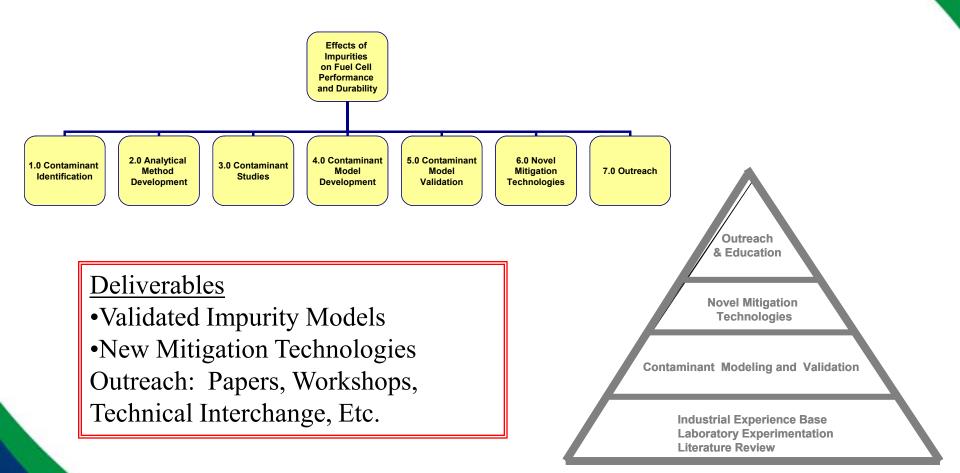
- Overall Objective Develop an Understanding of the Effects of Various H₂ Impurities on Fuel Cell Performance and Durability – Critically Important For Automotive Fuel Quality
- Specific Task Objectives Shown Below

Task	Objectives
1.0 Contaminant Identification	 Identify specific contaminants and contaminant families present in both fuel and oxidant streams.
2.0 Analytical Method Development	 Development of analytical methods to study contaminants. Experimental design of analytical studies. Novel <i>in situ</i> detection methods.
3.0 Contaminant Studies	 Develop contaminant analytical models that explain these effects. Establish an understanding of the major contamination-controlled mechanisms that cause material degradation in PEM cells and stacks under equilibrium and especially dynamic loading conditions
4.0 Contaminant Model Development	 Construct material state change models that quantify that material degradation as a foundation for multiphysics modeling Establish the relationship between those mechanisms and models and the loss of PEM performance, especially voltage decay
5.0 Contaminant Model Validation	 Validate contaminant models through single cell experimentation using standardized test protocols.
6.0 Novel Mitigation Technologies	 Develop and validate novel technologies for mitigating the effects of contamination on fuel cell performance.
7.0 Outreach	 Conduct outreach activities to disseminate critical data, findings, models, and relationships etc. that describe the effects of certain contaminants on PEM fuel cell performance.



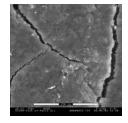
Approach

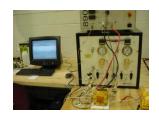
- Leverage Existing Database From Prior Work
 - DOE Sponsored Activity
 - USFCC Data
 - Prior Electrolysis Product Experience
- Focus on Specific Impurities/Concentrations
 Identified by DOE/Industry/Working Groups
- Use Standardized Test Protocols Where Appropriate to Investigate Impurity Effects
- Develop Empirical Models Based on Our Findings

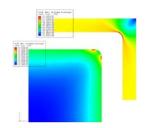


Project Work Plan/Deliverables

Roles of Participants


The Universtiy of Connecticut Connecticut Global Fuel Cell Center Program Lead


United Technologies Hamilton Sundstrand Advise on Fate of Contaminants The University of Connecticut Institute for Materials Science Gas Analyses/Surface Studies The University of Connecticut School of Engineering Contaminant Testing Modeling & Mitigation Strategies FuelCell Energy Inc.
Contaminant Identification
Fuel Cell Testing


•Electrolysis Contaminant Experience •Prior Contaminant Studies

•Surface Studies/Equipment •Gas Purity Analyses

- Fuel Cell Testing
 Modeling/Transport
 Expertise
 Industry Relationships
- •Gas Contaminant Experience •Fuel Cell Test Experience

Critical Assumptions and Issues

- Issues: Impurity Database Not Well Established, More Coordination Between Laboratories Needed, Little Test Standardization
- Approach: Significant Coordination Between Labs Being Established Through DOE and Working Groups.
 Standardized Protocols, Hardware Configurations Being Established.



Hydrocarbons and Halogenated Compounds

Specification for Draft CD

- •NMHC/Total HC's 2 ppm
- •Formaldehyde 10 ppb
- •Formic Acid 0.2 ppm
- •Total Halogenates 50 ppb

- Methane
- Ethane
- Ethylene
- Acetaldehyde
- Formaldehyde
- Formic Acid
- Chloromethane
- Others

Test Strategy

- •Focus on Molecules That May Be Present in Fuel Stream
- •Impurity Choices Based on Industry Input and Literature Review
- Standardized Hardware
- Standardized Test Protocols
- •Begin With High Levels
- •If No Effect, Move to Different Impurity
- •If There is Performance Impact, Reduce Concentration and Test
- Outside Validation of Performance

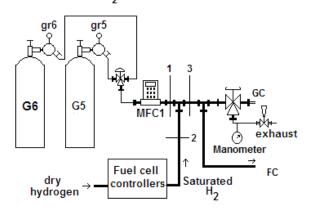
Hardware and Test Definition

Cell Hardware Definition

Parameter	Early	Intermediate	Recent
Membrane	Nafion® 212	Nafion® 212	PRIMEA®
Loading (mg/cm ²) (A/C)	0.4 / 0.2	0.4 / 0.4	0.1 / 0.4
MEA OEM	Ion Power	Ion Power	Gore
GDL	SGL 10 BB	SGL 10 BB	SGL 25 BC
Active Area (cm ²)	25	25	25

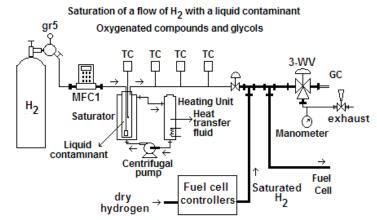
Test Condition Definition

Parameter	Early	Intermediat	Recent
		e	
Temperature (° C)	80 / 80 / 80	80 / 80 / 73	80 / 73 / 49
(A/Cell/C)			
Humidity (%) (A/C)	100 / 100	100 / 75	75 / 25
Stoich. (A/C)	1.3 / 2.0	2.0 / 2.0	1.2 / 2.0
Flow Rate (A/C)	Commensurate	with current dens	ity
Pressure (psig) (A/C)	25 / 25	25 / 25	7 / 7



Mixing and Means of Validating Concentrations

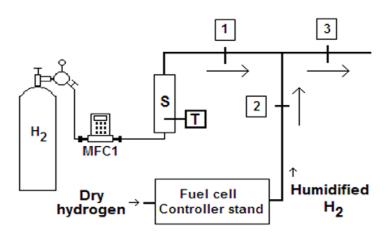
Gases and High Vapor Pressure Oxygenated Compounds e.g., Methane, Ethane, Acetaldehyde, Formaldehyde


Mixing of H₂ and high vapor pressure oxygenated contaminants

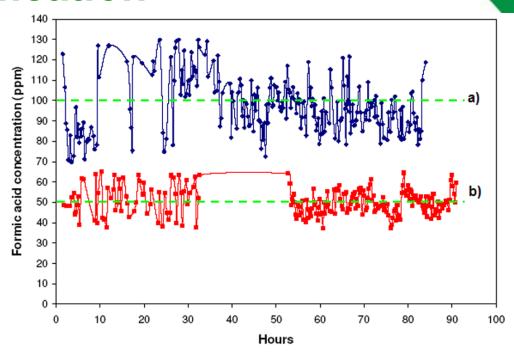
Certified mixtures H₂ and the contaminant G6 and G5

Non-Gaseous Impurities e.g., Formic Acid, Acetic Acid, Ethanol, Methanol, Propylene Glycol, Ethylene Glycol

Mixing of H₂ and Non-gaseous contaminant



Impurity Mixing and Verification



- Mixture hydrogen + formic acid (FA) saturated at the temperature T in the saturator
- 2. Humidified hydrogen from the fuel cell stand
- 3. Mixture fed to fuel cell

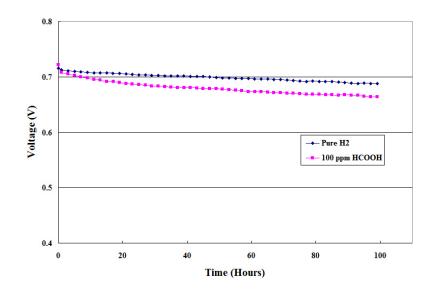
S: Saturator with liquid FA

MFC1: Mass flow controller for H₂ fed to S T: Saturator temperature controller

General diagram for the setup used to prepare the formic acid in hydrogen mixtures.

HCOOH concentration (ppm) in fuel during the 100 hour experiments.

Nominal concentrations of the contaminant 100 ppm and 50 ppm.

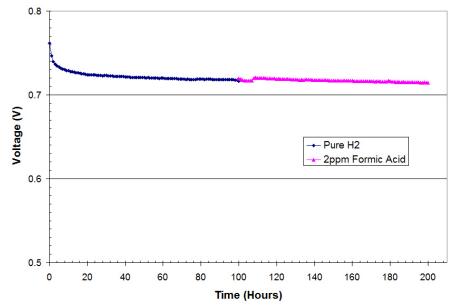

Formic Acid (HCOOH) - 100 ppm

Operating Conditions	Cell#	Impurity	Current Density (mA/cm²)	RH (%) A/C	Cell Temp ° C	Back Pressure	Stoich. A/C
	35	100 ppm HCOOH	800	100/75	80	25 psig	2.0/2.0
MEA	Vendor	Membrane	Active Area (cm²)	Pt Loading (mg/cm²) A/C	GDL		
	Ion-power	Nafion® 212	25	0.4 / 0.4	SGL 10 BB		

Test Procedure

- 1) Fuel Cell conditioning;
- 2) Operate the fuel cell for 100 hrs with pure H₂;
- Recondition the fuel cell when preparing the impurity mixture;
- 4) Introduce 100 ppm HCOOH and operate for 100 hrs.

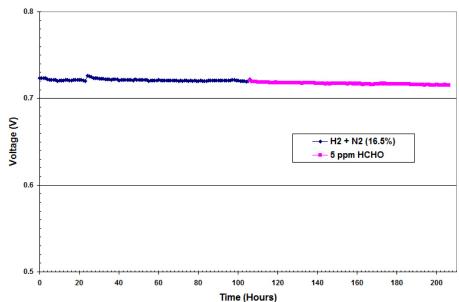
CV and other tests show that HCOOH can cross the membrane and contaminate the cathode. Full recovery of the peaks is not observed; however this may be caused by a combination of coarsening or dissolution of Pt, and more permanent effects of HCOOH contamination.



Formic Acid (HCOOH) – 2 ppm

Operating Conditions	Cell#	Impurity	Current Density (mA/cm²)	RH (%) A/C	Cell Temp ° C	Back Pressure	Stoich. A/C
	48	2 ppm HCOOH	800	100/75	80	25 psig	2.0/2.0
MEA	Vendor	Membrane	Active Area (cm²)	Pt Loading (mg/cm²) A/C	GDL		
	Gore	Gore-Select®	25	0.1/0/4	SGL 25 BC		

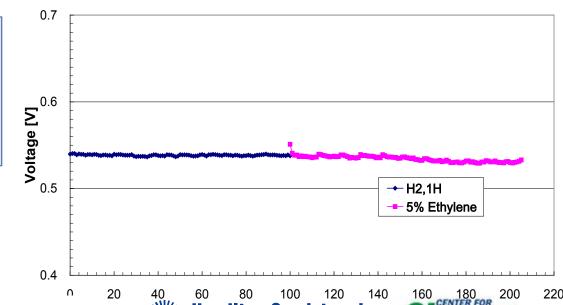
- 1) Fuel Cell conditioning;
- 2) Operate the fuel cell for 100 hrs with pure H₂;
- 3) Introduce 2 ppm HCOOH and operate for 100 hrs.



Formaldehyde (HCHO) – 5 ppm

Operating Conditions	Cell#	Impurity	Current Density (mA/cm²)	RH (%) A/C	Cell Temp ° C	Back Pressure	Stoich. A/C
	54	5 ppm HCHO	800	100/75	80	25 psig	2.0/2.0
MEA	Vendor	Membrane	Active Area (cm²)	Pt Loading (mg/cm²) A/C	GDL		
	Gore	Gore Select	25	0.1 / 0.4	SGL 25 BC		

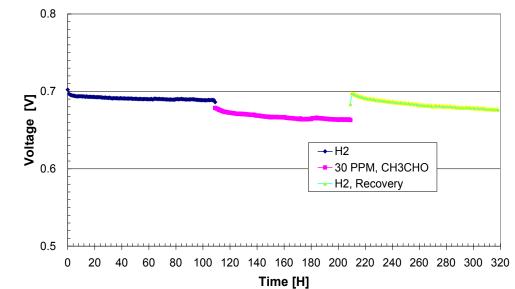
- 1) Fuel Cell conditioning;
- 2) Operate the fuel cell for 100 hrs with pure H₂;
- 3) Introduce 5 ppm HCHO and operate for 100 hrs.



Ethylene (C_2H_4) - 5%

Operating Conditions	Cell #	Impurity	Current Density (mA/cm²)	RH (%) A/C	Cell Temp ° C	Back Pressure	Stoich. A/C
	57	5% C ₂ H ₄	1000	75/25	80	7PSI	1.2/2.0
MEA	Vendor	Membrane	Active Area (cm²)	Pt Loading (mg/cm²) A/C	GDL		
	Gore	Gore Select	25	0.1 / 0.4	SGL 25 BC		

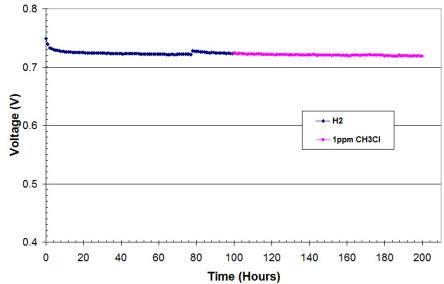
- 1) Condition the fuel cell;
- Operate the fuel cell for 100 hrs with pure H₂;
- 3) Introduce 5% C₂H₄ and operate for 100 hrs;



Acetaldehyde (CH₃CHO) – 30 ppm

Operating Conditions	Cell #	Impurity	Current Density (mA/cm²)	RH (%) A/C	Cell Temp ° C	Back Pressure	Stoich. A/C
	57	30 ppm CH ₃ CHO	800	100/75	80	25PSI	2.0/2.0
MEA	Vendor	Membrane	Active Area (cm²)	Pt Loading (mg/cm²) A/C	GDL		
	Gore	Gore Select	25	0.1 / 0.4	SGL 25 BC		

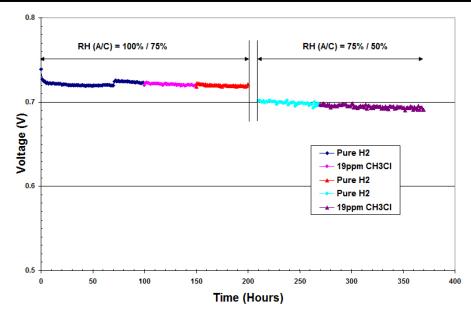
- 1) Condition the fuel cell;
- 2) Operate the fuel cell for 100 hrs with pure H₂;
- 3) Introduce 30 ppm CH₃CHO and run for 100 hrs;
- Remove 30 ppm CH₃CHO and switch back to H2 for 100 hrs for recovery test.



Methyl Chloride (CH₃Cl) – 1 ppm

Operating Conditions	Cell#	Impurity	Current Density (mA/cm²)	RH (%) A/C	Cell Temp ° C	Back Pressure	Stoich. A/C
	49	1 ppm CH ₃ CI	800	100/75	80	25 psig	2.0/2.0
MEA	Vendor	Membrane	Active Area (cm²)	Pt Loading (mg/cm²) A/C	GDL		
	Gore	Gore Select	25	0.1 / 0.4	SGL 25 BC		

- 1) Fuel Cell conditioning;
- 2) Operate the fuel cell for 100 hrs with pure H₂;
- 3) Introduce 1 ppm CH₃Cl and operate for 100 hrs.



Methyl Chloride (CH₃Cl) – 19 ppm

Operating Conditions	Cell #	Impurity	Current Density (mA/cm²)	RH (%) A/C	Cell Temp ° C	Back Pressure	Stoich. A/C
	52	19 ppm CH ₃ Cl	800	See the figure	80	25 psig	2.0/2.0
MEA	Vendor	Membrane	Active Area (cm²)	Pt Loading (mg/cm²) A/C	GDL		
	Gore	Gore Select	25	0.1 / 0.4	SGL 25 BC		

- 1) Condition the fuel cell;
- 2) Operate the fuel cell for 100 hrs with pure H₂;
- 3) Introduce 19 ppm CH₃Cl and run for 50 hrs;
- 4) Remove CH₃Cl, switch to pure H₂ and run another 50 hrs;
- 5) Change RH and run for 75 hrs with pure H₂.
- 6) Introduce 19 ppm CH₃Cl again and run for 100 hrs.

Impurity Test Summary

Impurity Class/Target	Tested	Concentration	Source	Result
NMHC/Total Hydrocarbons - 2 ppm	Methane	100 ppm	UCONN	
	Methane	1%	JARI	
	Methane	5%	UCONN/JARI	
	Ethane	100 ppm	JARI	
	Ethane	5%	UCONN/JARI	
	Ethylene	100 ppm	JARI	
	Ethylene	5%	UCONN/JARI	
	Acetaldehyde	30 ppm	UCONN	
	Benzene	500 ppm	JARI	
	Benzene	750 ppm	JARI	
	Benzene	1000 ppm	JARI	
	Toluene	20 ppm	HNEI	
	Methanol	500 ppm	JARI	
	Methanol	1500 ppm	JARI	
	Methanol	2000 ppm	JARI	
	Methanol	2500 ppm	JARI	
	Acetone	100 ppm	JARI	
	Acetone	250 ppm	JARI	
	Acetone	400 ppm	JARI	
	Acetone	500 ppm	JARI	
Formaldehyde - 10 ppb	Formaldehyde	1 ppm	UCONN	
	Formaldehyde	3 ppm	JARI	
	Formaldehyde	5 ppm	UCONN/JARI	*
	Formaldehyde	10 ppm	JARI	
	Formaldehyde	20 ppm	JARI	
Formic Acid - 0.2 ppm	Formic Acid	2 ppm	UCONN	
	Formic Acid	10 ppm	JARI	
	Formic Acid	20 ppm	JARI	
	Formic Acid	50 ppm	UCONN/JARI	
	Formic Acid	100 ppm	UCONN/JARI	*
	Formic Acid	500 ppm	JARI	
	Formic Acid	5%	UCONN	
Total Halogenates - 50 ppb	Methyl Chloride	1 ppm	UCONN	
	Methyl Chloride	19 ppm	UCONN	
	Perchloroethylene	0.05 ppm	SRNL	
	Perchloroethylene	1 ppm	SRNL	
	Perchloroethylene	30 ppm	SRNL	

Key			
0 mv			
<10 mv			
>10 mv			

^{*} Signifies Disagreement in Data

Gaps in Testing/Data

- Limited Test Conditions/Data Sets for Many of the Tests
- No Long-Term Tests Conducted Aged Cells
- No Multi-Contaminant Tests Conducted
- Transients Not Examined (e.g., Automotive Load Cycles/Start-Stop)
- Limited Data Set for Halogenates
- Ethylene Data Collected on Poor Performing Cell
- What Happens With Recycle?

Impurity Test Summary

Impurity Class/Target	Category	Examples	Concentration/Result	Supports Target?	Suggestion
NMHC/Total Hydrocarbons - 2 ppm					
	Alkanes	Methane, Ethane	5%	Yes	
	Alkenes	Ethylene	100 ppm	Yes	
	Aldehydes	Acetaldehyde	30 ppm	No	Collect Data at Lower Conc.
	Alcohols	Methanol	500 ppm	Yes	
	Ketones	Acetone	100 ppm	Yes	
	Aromatics	Benzene, Toluene	20 ppm	No	Collect Data at Lower Conc.
Formaldehyde - 10 ppb			1 ppm	Yes	
Formic Acid - 0.2 ppm			2 ppm	Yes	
Total Halogenates - 50 ppb					
		Methyl Chloride	19 ppm	Yes	
		Perchloroethylene	0.05 ppm	No	Separate Limits

- NMHC/THC Target Met for Alkanes, Alkenes, Alcohols and Ketones
- More Data Needed for Aldehydes/Aromatics
- Formaldehyde Does Not Seem to Be a Problem
- Formic Acid Seems OK at 10X Target
- 50 ppb Target Might be a Problem for Halogenates

Difficult to Make a Broad Judgement on NMHC/THC's or Total Halogenates

Formic Acid Summary

- Effects of HCOOH contamination on PEFC performance are investigated. Significant effect on cell performance is observed.
- Periodic EIS during contamination shows increased charge transfer and diffusion resistance with contamination time.
- CV scans are performed during <u>non-operating</u> conditions. It is seen that HCOOH can cross-over to the cathode, which results in oxidation peaks at 0.4 V and 0.6 V.
- During the first CV scan, the oxidation peak seen at 0.4 V is completely removed, 0.6 V peak is decreased significantly.
 - During cell operation, HCOOH can be oxidized at the cathode, where O_2 is present and potentials are high enough.
- Exposure to pure H₂ recovers part of the H₂ desorption peak.
 - No further recovery after first 20 hours.
 - Catalyst degradation (unrelated to HCOOH) + any permanent effect of HCOOH
- Separate the contribution of the anode and the cathode is critical to further understand the contamination process.
 - Further characterization is underway

Formic Acid Mechanistic Studies

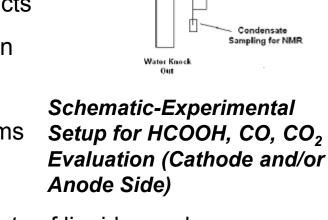
Example: Chemical Analysis

Formic Acid Contamination Pathways

GC/MS, FT-IR, NMR, GC, Analysis GC/MS-MS

- Identification and quantification of possible byproducts
- Monitoring gas evolution during continuous operation

FT-IR


- Identification of functional groups of gaseous streams

Nuclear Magnetic Resonance, NMR

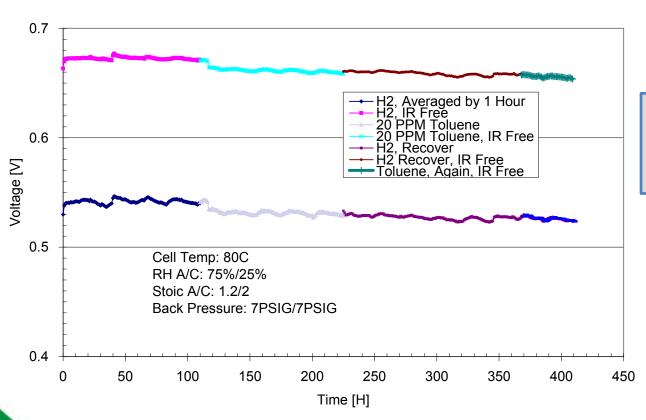
- Identify different organic compounds in small amounts of liquid samples

Gas Chromatography, GC

Identification, quantification liquid compounds

Evaluation Gas sampler

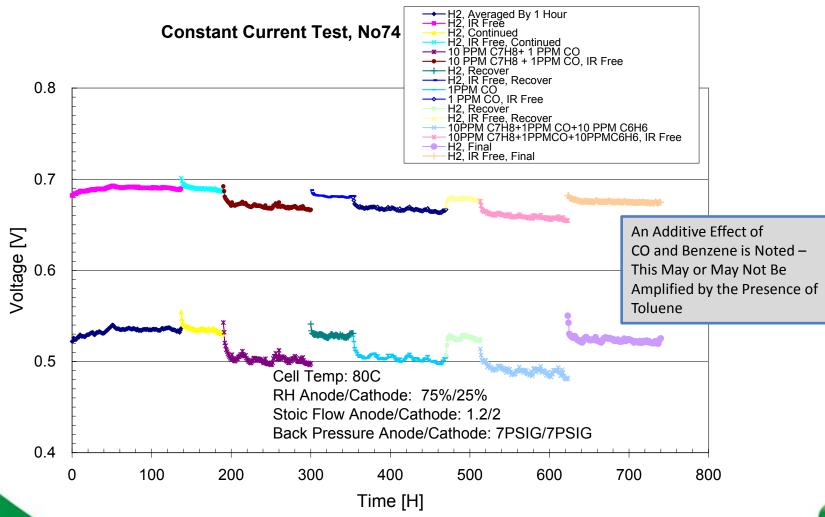
> Fuel Cell



Studies of Aromatics

Constant Current of No.69 Cell @1000mA/cm^2

Perhaps a Very Small Irrecoverable Performance Impact Is Noted



Mixtures - Aromatics + CO

Recent Test Summary

Test ID: C2E2

MEA: GORE, , Pt Loading A/C: 0.1/0.4 mgPt/ cm²

Cell Hardware: Fuel Cell Technologies Inc.

Active Area: 25 cm² Cell Temperature: 80° C

Test Station: Teledyne MEDUSA®

Cell#	Lot#	Current Density	RH (A/C)	Flow Rates A/C	Back Pressure A/C	Contaminant	Results
51	GORE	800 mA/cm ²	100%/75%	279/664 sccm	25/25 PSIG	100РРМ НСООН	Degradation
52	GORE	1000mA/cm ²	75%/25%	210/883 sccm	7/7 PSIG	19PPM CH₃CL	No Degradation
54	GORE	800 mA/cm ²	75%/25%	210/883 sccm	7/7 PSIG	5РРМ НСНО	No Degradation
57	GORE	1000 mA/cm ²	75%/25%	210/883 sccm	7/7 PSIG	5% C ₂ H ₄	No Degradation
64	GORE	1000 mA/cm ²	75%/25%	210/883 sccm	7/7 PSIG	1% C ₂ H ₄	No Degradation
66	GORE	800 mA/cm ²	100%/75%	279/664 sccm	25/25 PSIG	30PPM CH₃CHO	No Degradation
69	GORE	1000 mA/cm ²	75%/25%	210/883 sccm	7/7 PSIG	20PPM C ₇ H ₈	Small Degradation?
71	GORE	1000 mA/cm ²	75%/25%	210/883 sccm	7/7 PSIG	30PPM CH₃CHO	No Degradation
74	GORE	1000 mA/cm ²	75%/25%	210/883 sccm	7/7 PSIG	10PPM C ₇ H ₈ , 1 PPM CO, 10 PPM C ₆ H ₆	Degradation Due to CO Amplified By Presence of Benzene

Testing of Fuel Quality Specifications

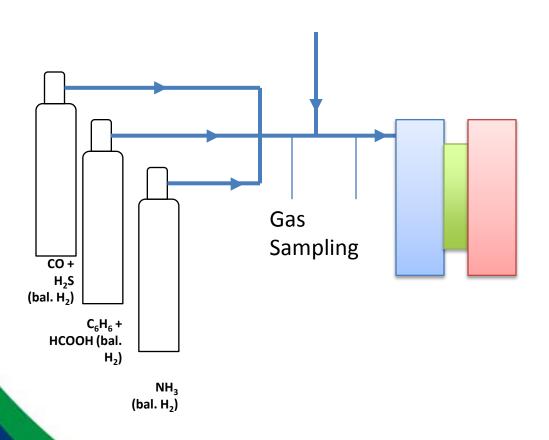
Specifications for Committee Draft (CD) ISO 14687-2

- Long term (stability) testing of ISO Draft Fuel Quality Standards
 - Individual impurity concentrations found to be acceptable
 - Investigating compound/additive effects

Surrogate H₂ fuel tested:

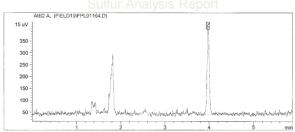
Component	UConn Fuel
Hydrogen	99.97+
Sulfur (as H ₂ S)/total S	4 ppb
СО	0.2 ppm
NH ₃	0.1 ppm
Total HCs (C ₆ H ₆)	2 ppm
Formic acid	.2 ppm

Component	ISO/SAE Specs
Hydrogen	99.97+
Sulfur (as H ₂ S)/total S	4 ppb
СО	0.2 ppm
CO ₂	2 ppm
NH ₃	0.1 ppm
NMHC/Total HCs	2 ppm
Particulates	1 μg/L (10 μm size)
Total non H ₂ gases	<.03% (300 ppm)
Water	5 ppm
Oxygen	5 ppm
Не	300 ppm
$N_2 + Ar$	100 ppm
Formaldehyde	10 ppb
Formic acid	0.2 ppm
Total halogenates	50 ppb



Impurity Cocktail Test Setup

- Gas Composition
 Used as an Ersatz
 for Fuel Quality
 Specification
- Gas Analyses
 Conducted at FCE
 Down to 4 ppb of
 H₂S
 - SulfInert® Canisters
 - SKC 245-28Sample Bags



Durability Testing

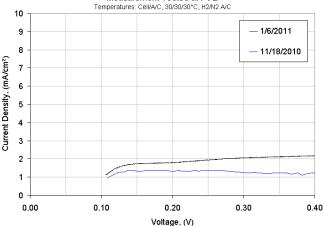
impurity Cocktail Test

- Carbon Monoxide analysis at ppb level
- Sulfur analysis (H₂S and all other sulfur species) at ppb level
- Provided special sample cylinders for H₂S analysis (with SulfInert coating)

Tested three cells at FCE for up to 2,500 hours at accelerated test conditions of 1 A/cm², to compare performance and evaluate potential long-term effect of contaminants.

Cell characteristics before/after

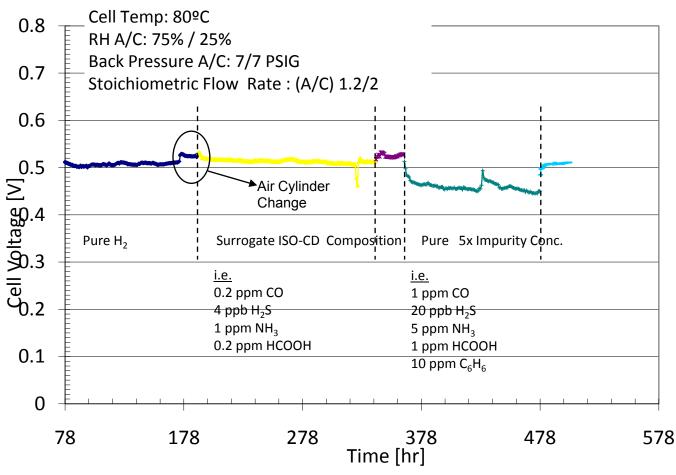
~700 hrs of testing at FCE


DOE74 Single Cell Diagnostic Test Table

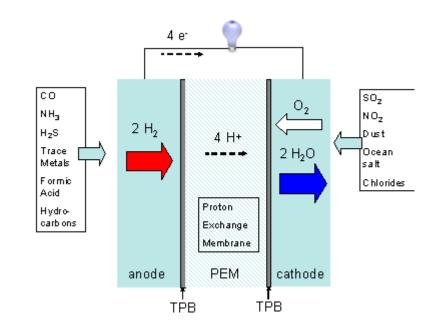
	BOL at UConn	EOL at UConn	BOL at FCE	EOL at FCE
H ₂ Cross-over (mA/cm²)	1.1	1.2	1.3	2.1
Anode Surface Area (m²/g)	56.48	42.57	Jonathan to fill in	Jonathan to fill in
Cathode Surface Area (m²/g)	65.69	55.85	Jonathan to fill in	Jonathan to fill in

Qutreach: JHQTF, DOE Impurities meetings and program reviews

Uconn Cell #74 EC Gas Cross Over Measurement Tested at FCE



Impurity Cocktail Testing


Mitigation Techniques

Three Main Categories

- Improved Materials
- Change in Operating Conditions (T, CD, Stoich, Recycle)
- 3. Processes for Cleaning Up (External or Internal)

Issues/Concerns

- Many Impurities Have Been
 Studied Individually Mitigation
 Strategy for Individual Impurity
 May Not be as Effective in
 Presence of Other Impurities
- Cocktail May Change Poisoning Mechanism/Model

Focus to Address
Formic Acid and Relate to Other Organics

Collaborations

- Collaborated With Hydrogen Quality Working Group on Test Methods, Results, Hardware Configurations, Modeling, Etc.
- Collaboration With ISO Working Group on H₂ Quality Standards
- Student Collaboration With Dr. Karren More at ORNL on SEM/TEM Characterization of MEAs
- Continuous Exchange of Data/Personnel/Hardware Amongst our Team

Future Work

	Yr1				Yr 2			Yr3			Yr 4				Yr 5					
	Q1	02	Q3	04	Q1	02	Q3	04	01	Q2	Q3	Q4	01	Q2	Q3	Q4	01	Q2	03	Q4
1.0 Contaminant Identification		-,-					-,-	<u> </u>						-,-					-,-	
2.0 Analytical Method Development																				
3.0 Contaminant Studies																				
4.0 Contamination Model Development																				
5.0 Contaminant Model Validation																				
6.0 Novel Mitigation Techniques																				
7.0 Outreach																				
8.0 Project Mgt. and Rptg.																				

Future Activity

- •Wrap Up Collection of Data on Impurities With Incomplete Data Sets - From Global Test Efforts
 - •Near ISO Goals for Impurities Showing Effects
 - Sparse Data Sets
 - •Data Sets Collected With Material Inconsistencies
- $\hbox{\bf \cdot Complete Models/Validation-Share Data/Models With Others}$
- •Develop Plan and Implement Mitigation Activity
- •Continue Outreach/Coordination With Other Labs

Task	Milestone	Date Year/Quarter			
1.0 Contaminant Identification	Contaminant Identification Review With DOE Sponsor & Industry Focus Group	Y1/Q2			
2.0 Analytical Method Development	Validate Analytical Methods For Studying Contaminants With Ersatz Gases	Y1/Q4			
3.0 Contaminant Studies	Establish an Understanding of the Major Contamination-Controlled Mechanisms that Cause Material Degradation	Y24Q3			
4.0 Contaminant Model Development	Determine the Relationship Between Contaminant Mechanisms and the Loss of PEM Performance, Especially Voltage Decay.	Y4/Q3			
5.0 Contaminant Model Validation	Validate Contamination Models Through Single Cell Experimentation Using Standardized Test Protocols and a DOE Approved Test Matrix	Y4/Q3			
6.0 Novel Mitigation Technologies	Demonstrate Novel Technologies for Mitigating the Effects of Contamination on Fuel Cell Performance	Y4/Q4			
7.0 Outreach	Dissemination of Results Through Reports (DOE Approved), Papers and Workshops	Continuous			
8.0 Project Management and Reporting	Program Written Reports and Program Reviews	Continuous			

Project Summary

- Relevance A Deeper Understanding of the Effects of Specific Contaminants on Fuel Cell Performance is Necessary for Successful Commercialization
- Approach Our Experienced Team Will:
 - Leverage Existing Knowledge and Will Systematically Investigate Certain Fuel Contaminants of Interest
 - Create Empirical and Detailed Analytical Models to Predict the Fate of Specific Contaminants and Their Effect on Fuel Cell Performance
- <u>Technology Transfer</u> Data Will Be Shared Through Papers, Workshops, Working Groups, Etc.
- Collaboration Active Partnership with UTC and FCE, Other Test Labs

