

Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells:

Morphological Simulations and Experimental Approaches

Silvia Wessel Ballard Materials Products 11 May 2011

Project ID# FC049

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Date: January 2010
- End Date: March 2013
- Percent Complete: 38%

Barriers

A. Durability

- Pt/carbon-supports/catalyst layer
- B. Performance
- C. Cost (indirect)

Budget

- Total Project: \$6,010,181
 - \$ 4,672,851 DOE + FFDRC
 - \$ 1,337,330 Ballard
- Funding Received:
 - \$1,835,000 (Total)
 - FY 2010: \$ 1,435,000
 - FY 2011: \$ 400K to date, \$1M planned

Project Partners

- Georgia Institute of Technology
- Los Alamos National Laboratory
- Michigan Technological University
- Queen's University
- University of New Mexico

Relevance

PAGE 3

Objective

- Identify/Verify Catalyst Degradation Mechanisms
 - Pt dissolution, transport/ plating, carbon-support oxidation and corrosion, and ionomeric thinning and conductivity loss
 - Mechanism coupling, feedback, and acceleration
- Correlate Catalyst Performance & Structural Changes
 - Catalyst layer morphology and composition; operational conditions
 - Gas diffusion layer properties
- Develop Kinetic and Material Models for Aging
 - Macro-level unit cell degradation model, micro-scale catalyst layer degradation model, molecular dynamics degradation model of the platinum/carbon/ionomer interface
- Develop Durability Windows
 - Operational conditions, component structural morphologies and compositions

Impact

- Increasing catalyst durability
 - Based on understanding of the effect of structure and operating conditions
- Enabling achievement of DOE catalyst durability targets
 - Durability with cycling, i.e. ≤40% mass activity loss, <10% carbon support mass loss

Project Milestones & Timeline

BALLARD

Correlations Development Milestones

🛛 🛨 Go/No-Go Decision Point

Tools/Methodology Development Milestones

Go/No-Go Decision Point

Validation of statistically generated BOL UC-Model performance curves against experimental results

Go: Model predictions are within the 95% statistical variability of the experimental data for the baseline MEA at standard conditions

Milestones 2010/2011

Model Development

- Molecular dynamic model of the Pt/C/ionomer system
 - $\checkmark \bullet$ Determined cohesive energy of Pt cluster and interaction with H_2O and O_2, C and ionomer interactions are in progress
- Micro-structural catalyst model expansion for liquid water
 - $\sqrt{\bullet}$ Implemented preliminary transient 2-phase flow
 - $\checkmark \bullet$ Extraction of effective properties vs. catalyst layer composition and simulation of catalyst performance vs. effective properties is in progress
- BOL MEA/Cell macro-model development and validation
 - $\sqrt{\bullet}$ Liquid water transport physics (from literature) has been added, under refinement
 - $\sqrt{\bullet}$ Interfacial transport resistance model derived, implementation is in progress
 - $\sqrt{\bullet}$ Statistical input modification and preliminary validation completed
 - $\sqrt{\bullet}$ Final validation of Beginning of Life (BOL) Model is in progress.

Experimental Investigations

- Operational and Structural Design Curves
 - $\sqrt{\bullet}$ Carbon type study: Performance degradation rates established
 - $\sqrt{\bullet}$ Ionomer content study: Performance degradation rates established
 - $\sqrt{\bullet}$ Pt/C ratio study is in progress
 - $\sqrt{\bullet}$ Upper Potential Limit study (two carbon supports) is completed
- Characterization
 - In-situ HRTEM Tool planned
 - Quantitative changes of the Pt surface and carbon support: Cathode powder characterization and correlation development is in progress

V - Completed

Technical Progress - Modeling BOL Unit Cell Performance Model

Model Scripts

1-D - Unit Cell MEA model was re-derived for statistical inputs

- Statistical inputs in geometry, transport/electrochemistry properties, and operational conditions
- Moved to modular format to allow ease of physics modifications
- Script based format allows automated parametric studies

BALLARD

Technical Progress – Modeling BOL Simulations

BALLARD

Statistical Sensitivity of Input Parameters

Tested 1 – 10% variability in each input parameter.
Sensitive parameters are Tafel Slope, catalyst ionic resistance, catalyst thickness, j_o, ECSA, Pt

loading, Pt:C ratio

Technical Progress - Modeling BOL Simulations

BALLARD

PAGE 9

Statistical Input Options

Component Properties	% Deviation (1 Std Dev)	
Catalyst/Catalyst Layer		
Thickness (microns)	+/- 8%	
Weight Ratios (%)		
Pt:C	+/- 1%	
(Pt:C):Ionomer	+/- 1%	
Pt Loading [mg/cm ²]	+/- 1.25 %	
Pt size	+/- 10%	
Tafel Slope [mV/dec]	fixed	
Jo [A/cm^2 pt]	+/- 10%	
GDL		
Porosity	fixed	
Tortuosity	+/- 3%	
Thickness (microns)	+/- 4%	
Membrane		
Thickness (microns)	+/- 2%	

Statistical Input

Comparison to Data

- The average experimental results agree with model prediction to ~ 1.0A/cm² (1Std Dev)
 - Experimental dataset of 20 (different MEA batches and test stands)
 - Differences between predicted and experimental at high current densities likely caused by water sensitivity
- Model is currently extended to include 2-phase flow

Technical Progress - Modeling BOL Simulations

BALLARD

PAGE 10

Statistical Parametric Study

- Variation of Pt loading from 0.1 to 0.7mg/cm² in steps of 0.02mg/cm²
 - For each loading 15 polarization curves were generated
 - Model was validated against commercial test hardware, loading dependency is similar between the hardware.

Technical Progress Effect of Upper Potential Limit

BALLARD

spike does not cause significant degradation

AST: Air/H2, 100% RH, 5 psig, 80°C, 0.6 V (30 sec) → UPL (60 sec), 4700 cycles

Technical Progress Effect of Upper Potential Limit

Pt Supported on Low/Medium Surface Area Carbon

Pt Agglomeration at EOT

- Both catalysts have similar agglomeration at UPL>1.0V
- Pt50 LSAC has slightly larger Pt size
- PITM at EOT shows dependency on UPL
 - Similar PITM concentration for both catalysts
- Catalyst layer thickness at EOT is dramatically reduced for UPL>1.2V
 - Pt50-MSAC less corrosion resistant than LSAC

BALLARD

Technical Progress MEA Characterization-Water Content

Neutron Imaging - AST Test Pt50-LSAC 0.6 V images, 80°C, 100%RH; after cycles of 0.6 – 1.4 V in H2/air

Water content at 0.6V increases to 100 Cycles, decreases from 100 cycles to EOT

Performance loss is not observed until >250 cycles

ECSA loss as observed in 50 cm² test hardware

Technical Progress Effect of Carbon Type

- Pt average crystallite size is similar for all non-heat treated Pt catalyst powders
- Heat treatment widens particle size distribution and increases average crystallite size
- EOT (1.2V UPL) crystallite size varies with carbon support structure

BALLARD

Technical Progress Effect of Carbon Support Structure

ECSA Breakdown @ EOT

BALLARD

- Catalysts supported on higher surface area carbons show in general improved performance but durability is greatly impacted
- Carbon support surface area is not the only measure of durability, the carbon structure and morphology impacts durability

AST: Air/H2, 100% RH, 5 psig, 80°C, 0.6 V (30 sec) → 1.2V (60 sec)

graphitic content

- Voltage loss
- Catalyst layer ionic voltage loss
- ECSA, Pt dissolution
- Carbon corrosion (cathode thickness change)

Graphitic Carbon, Carbon Powder (% of total C)

54

56

52

40

30

20

10

0

48

50

AST: Air/H2, 100% RH, 5 psig, 80°C, 0.6 V (30 sec)→ 1.2V (60 sec)

58

Technical Progress Effect of Ionomer Loading

BALLARD

Low Surface Area Carbon Catalyst (Pt50-LSAC)

100

ECSA Loss

0

0

10

20

- **Optimal performance for Nafion loading** is ~30wt%
- Increased ionomer content results in: increased catalyst layer ionic conductivity increased ECSA loss (Pt dissolution)
- Excessive ionomer (50wt%) results in greater mass transport and catalyst layer resistance losses

EOT 90 80 68 67 ₿ 70 61 58 60 $R^2 = 0.9986$ 50 39 40 30 20 10

ECSA Loss vs. lonomer Content

30

Ionomer Content (wt%)

40

50

60

70

AST: Air/H2, 100% RH, 5 psig, 80°C, 0.6 V (30 sec)→ 1.2V (60 sec)

Organizations / Partners

BALLARD

Prime: Ballard Material Products / Ballard Power Systems

(S. Wessel, D. Harvey, V. Colbow)

Lead: Micro-structural/MEA/Unit Cell modeling, AST correlations, characterization, durability windows

Queen's University – Fuel Cell Research Center (K.Karan, J. Pharoah)

Micro-structural Catalyst Layer/Unit Cell modeling, catalyst characterization

Georgia Institute of Technology (S.S. Jang)

Molecular modeling of 3-phase interface & Pt dissolution/transport

Los Alamos National Laboratory (R. Borup, R. Mukundan)

Characterization of catalyst layer/GDL

Michigan Technological University (J. Allen, R. S. Yassar)

Capillary pressure and interface characterization, catalyst layer capillary pressure tool development

University of New Mexico (P. Atanassov)

Carbon corrosion mechanism, characterization of catalyst powder/layers

Plan Forward Experimental/Characterization

BALLARD

Molecular Dynamics Model

- Completion of Pt/C/ionomer interface
- Molecular modeling of Pt dissolution

Micro-structural Model

- Completion of two-phase flow implementation
- Simulation of effective properties and performance with liquid water

ID-MEA Model

- Refinement of saturation model
- Validation of statistical 1D-MEA model with experiment
 - Go/No-Go decision June 30, 2011
- Integration of electrical contact resistance model
- Implementation of Multi-step ORR

Experimental Investigations

- Carbon Types
 - Investigate lower upper voltage limits
 - Correlate degradation with material properties
- Ionomer equivalent weight
- Pt/C ratio study
- Carbon corrosion (potential hold) study

Material Characterization

- GDL wettability and capillary pressure
- Interface characterization
- Property changes of aged GDLs and catalyst layers

Summary

BALLARD

Relevance

- Improve understanding of durability for fuel cell materials and components
- Provide recommendations for the mitigation of MEA degradation that facilitates achieving the stationary and automotive fuel cell targets

Approach

- Develop forward predictive MEA degradation model using a multi-scale approach
- Investigate degradation mechanisms and correlate degradation rates with catalyst microstructure and cell operational conditions

Technical Accomplishments and Progress to date

- Implemented statistical input option for macro model
- Quantified Pt/C catalyst performance degradation with UPL, carbon support type, ionomer loading
- Composition effects included in BOL MEA performance model and validated with experimental results

Collaborations

- Project team partners GIT, LANL, MTU, Queen's, UNM
- Participation in DOE Durability Working Group

Proposed Future Research

- Validate 2-phase flow micro-structural model and expand to full catalyst layer thickness
- Complete MD model of Pt/C/ionomer, develop MD description of Pt dissolution
- Refinement of liquid water transport physics, validate statistical capability (Go/No-Go)
- Effect of the carbon ratio and ionomer type on AST degradation rates

Project Applicability to Industry

BALLARD

Model Predictions of Performance and Degradation are based on MEA Components, Composition, and Processing (Structure)

Acknowledgement

BALLARD

Thank you:

- Financial support from the U.S. DOE-EERE Fuel Cells Technology Program
- Support from project managers/advisor Kathi Epping Martin, Jason Marcinkoski, David Peterson, and John Kopasz
- Project Collaborators

Acronyms/Abbreviations

AST	Accelerated Stress Test	LSAC	Low Surface Area Carbon
BOL = BOT	Beginning of Life = Beginning of Test	MD	Molecular Dynamics
СВ	Carbon Black	MEA	Membrane Electrode Assembly
CCL	Cathode Catalyst Layer	MOL = MOT	Middle of Life = Middle of Test
CL	Catalyst Layer	MPL	Micro-porous Layer
Cond	Conductivity	MSAC	Mid-range Surface Area Carbon
CV	Cyclic Voltammetry	NAA	Neutron Activated Analysis
ECSA	Effective Catalyst Surface Area	OER	Oxygen Evolution Reaction
EDX	Energy Dispersive X-ray Analysis	ORR	Oxygen Reduction Reaction
EIS	Electrode Impedance Spectroscopy	PSD	Particle Size Distribution
EOL = EOT	End of Life = End of Test	Pt/C	Platinum/Carbon Ratio
EPSA	Effective Pt Surface Area (cm2 Pt/cm2 geom)	PITM	Platinum in the Membrane
EW	Equivalent Weight	RH	Relative Humidity
FA	Failure Analysis	SA	Surface Area
GDL	Gas Diffusion Layer	SEM	Scanning Electron Microscopy
HFR	High Frequency Resistance	TEM	Transmission Electron Microscopy
HRTEM	High Resolution Transmission Electron Microscopy	UPL	Upper Potential Limit
HSAC	High Surface Area Carbon	XPS	X-ray Photoelectron Spectroscopy
HSAC-HT	High Surface Area Carbon - Heat Treated	XRD	X-ray diffraction

Technical Backup Slides

Approach

BALLARD

Model Development

- 3 scale modeling approach
 - Molecular dynamics model of the Pt/ carbon/ionomer interface, Pt dissolution and transport process
 - Microstructural catalyst layer model to simulate the effect of local operational conditions and effective properties on performance and degradation
 - Unit cell model predicting BOL performance and voltage degradation

Experimental Investigations/Characterization

- Systematic evaluation of performance loss, catalyst layer structural and compositional changes of different catalyst layer structures/compositions under a variety of operational conditions
 - Carbon support type, Pt/C ratio, ionomer content, ionomer EW, catalyst loading
 - Potential, RH, O₂ partial pressure, temperature
 - Accelerated stress tests (ASTs) combined with in-situ/ex-situ techniques
 - Performance loss breakdown to determine component contribution
 - In-situ/ex-situ characterization to quantify effect of electrode structure and composition on performance and durability

DOE Working Group (Durability and Modeling)

Interaction and data exchange with other projects

Experimental Approach

BALLARD

Experimental Approach Voltage Loss Breakdown Method

BALLARD

PAGE 26

Voltage Loss Breakdown 1.4 1.2 + -- Nernst Cell Potential 1.0 O2 Kinetic \ 0.8 0.0 v ||13 u v \ 0.6 Air Kinetic HF Cell Resistance Anode Gas Mass Transport 0.4 CCL Ionic 0.2 0.0 0.2 0.6 0.8 1.0 1.2 0.0 0.4 1.4 Current Density (A cm⁻²)

A. Young et al, Journal of The Electrochemical Society, **157** 3 B425-B436 2010

Separation of voltage loss based on Air/O₂ and EIS

- Kinetic/ohmic/mass transport loss
- Cathode catalyst layer ionic loss and estimated reaction penetration depth

Model validation of transport processes

- Kinetic rates for ORR
- Component resistances
- Mass transport losses at high and low current conditions

Experimental Benchmarking

BALLARD

Compare degradation mechanisms for AST protocols

Oxidant	Failure Modes	Advantages	Limitations
Nitrogen (Water)	 Pt Agglomeration Carbon Surface Oxidation Carbon Corrosion PITM (?) 	 Under N², membrane degradation is nominal No product water effects 	 Platinum deposition occurs near the membrane/catalyst interface and is not separable from catalyst agglomeration.
Air	 Pt Agglomeration PITM Carbon Surface Oxidation Carbon Corrosion 	 More realistic to field data due to separable platinum in the membrane. Potential to capture effect of ionomer degradation 	 More difficult to control RH due to water production Membrane degradation may occur at 1.0V UPL More difficult to control/ set- up equipment (potentiostat & loadbank)

Primary Protocol Differences (DOE vs. Ballard)

- Triangular vs. square ramp
 - Square cycling profile enables better control/understanding of mechanisms
- N₂ vs. synthetic Air
 - Ability to quantify Pt in the membrane failure mode
 - Failure modes representative of products
- 1.0V vs. 1.2V upper potential limit (UPL)
 - 1.2V UPL enables better comparison with state-of-the-art catalysts
 - UPL will be investigated in operational and structural studies

Experimental Benchmarking

BALLARD

Ranking of StressorsOperationalStructural

Operational Stressor	Range Studied	Mechanism Shift
UPL	0.8>>>1.2V 0.8>>>1.3 V 0.8>>>1.5 V	<u>≥1.2V</u> ≥1.2V ≥1.2V
Dwell Time Cycle #	30-5000sec (10,000-1 cycle)	
Temp (UPL 1.3V) Temp	60>>>80C	<u>≥</u> 70
(UPL 1.2V) RH	60>>>80C 50>>>120%	<u>></u> 75 <u>></u> 100%
LPL	0.5>>>0.8V	

<u>Legend</u>	

Negligible Effect: No Significant Change Small Effect: 2 to 5 times increase in deg. rate Medium Effect: 5 to 10 times increase in deg. rate Large Effect: >10X increase in deg. rate

*Based on LSAC

Results funded by Natural Resources Canada, Project ID: 414-CETC-526/823

Structural Stressor	Impact on Degradation
Carbon Support Type	High
Pt/C Ratio	High
lonomer loading	Medium
Pt Particle size	Medium
Membrane	Low-Medium
Pt Loading	Low
GDL Type	Low

*Based on literature and experimental results

*Relative Ranking

Catalyst Samples Being Investigated

	Sample ID	Sample Specifics
	Vulcan	Vulcan
E E	LSAC	Low Surface Area Carbon
arbo	MSAC	Mid-range Surface Area Carbon
ő	HSAC #1	High Surface Area Carbon #1
	HASC #2	High Surface Area Carbon #2
	Pt50-Vulcan	50/50 Pt/Vulcan
	Pt50-LSAC	50/50 Pt/Low Surface Area Carbon
	Pt50-MSAC	50/50 Pt/Mid-range Surface Area Carbon
(0)	Pt50-HSAC #1	50/50 Pt/High Surface Area Carbon #1
/sts	PT50-HSAC#1 -HT	50/50 Pt/High Surface Area Carbon #1 -Heat Treated
taly	Pt50-HSAC #2	50/50 Pt/High Surface Area Carbon #2
Car	Pt50-HSAC #2 HT	50/50 Pt/High Surface Area Carbon #2 - Heat Treated
	Pt30-LSAC	30/70 Pt /Low surface Area Carbon
	Pt40-LSAC	40/60 Pt /Low surface Area Carbon
	Pt60-LSAC	60/40 Pt /Low surface Area Carbon
	Pt80-LSAC	80/20 Pt /Low surface Area Carbon