The Effect of Airborne Contaminants on Fuel Cell Performance and Durability

Jean St-Pierre (PI)

University of Hawaii – Manoa, Hawaii Natural Energy Institute

May 9, 2011

Project ID # FC065

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: April 1, 2010
- Project end date: March 31, 2014
- Percent complete: 10-15 %

Budget

- Total project funding
 - DOE share: \$3,649,116
 - Contractor share: \$917,762
- Funding received in FY10: \$250,021
- Funding for FY11: \$950,000

Barriers

- Durability
 - 5000 cycling h by 2015 (automotive system)
- Performance
 - 50 % energy efficiency at rated power (automotive system)

Partners

- Interactions/collaborations:

 University of Connecticut, Center for Clean Energy Engineering (subcontractor), UTC Power (subcontractor), Ballard Power Systems (subcontractor)
- Project lead: Jean St-Pierre

Relevance - Objectives

Mitigation of the unknown effects of many airborne contaminants on membrane/electrode assembly materials, adversely impacting system performance and durability, represents the main project objective

Technical Targets for Automotive Applications: 80-kW₀ (net) Integrated Transportation Fuel Cell Power Systems Operating on Direct Hydrogen					
Characteristic	Units	2003 Status	2005 Status	2010	2015
Energy efficiency @ 25% of rated power	%	59	59	60	60
Energy efficiency @ rated power	%	50	50	50	50
Power density	W/L	440	500	650	650
Specific power	W / kg	420	470	650	650
Cost	\$ / kWe	200	110	45	30
Transient response (time from 10% to 90% of rated power)	seconds	3	1.5	1	1
Cold start-up time to 50% of rated power @-20°C ambient temp @+20°C ambient temp	seconds seconds	120 60	20 <10	30 5	30 5
Start up and shut down energy from –20°C ambient temp from +20°C ambient temp	MJ MJ	N/A N/A	7.5 N/A	5 1	5 1
Durability with cycling	hours	N/A	~1,000	5,000	5,000
Unassisted start from low temperatures	°C	N/A	-20	-40	-40

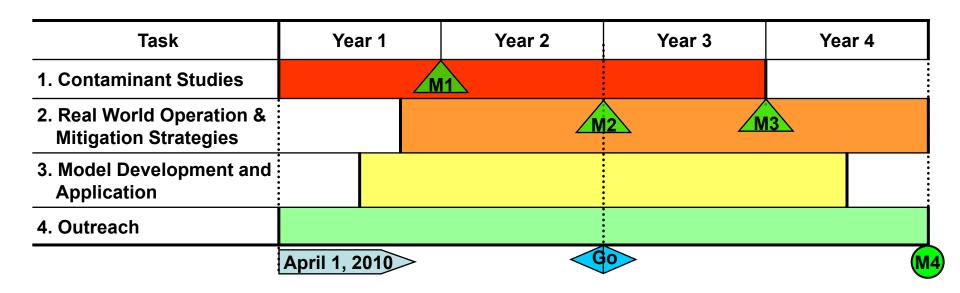
Relevance - Objectives

- Detailed project objectives include:
 - Characterize, analyze, understand and prevent the effects of airborne contaminants
 - Disseminate this information in a useful form to industry and other end users

Task	Objectives
	Objectives
1.1 Impurity	• Identify potential contaminants originating from air pollution and road side environments.
Identification and	Screen and prioritize impurities based on degradation of cell performance or chemical
Screening	interaction with the MEA.
	Quantify impact of contaminant and contaminant mixtures on fuel cell performance and
1.2 Contaminant Impact	durability at different operating conditions.
	• Quantify all reaction products to aid identification of reaction and adsorption processes.
	Quantify spatial variability of contaminant processes using segmented cell.
1.3 Cell Recovery	
	conditions.
1.4 Ex-situ Analysis	Characterize changes in catalyst, MEA and GDL structure resulting from exposure to
1.4 LX Situ / Kilary Sis	contaminant and contaminant mixtures.
2.1 Real World Operation	Characterize effect of contaminant at 'real world' operating conditions.
2.2 Mitigation Strategies	Explore operating strategies and novel techniques to mitigate contaminant effects.
	Validate and use empirical performance models to quantify and understand spatial
	variability of contaminant effects in PEMFCs.
3.0 Model Development	Develop and validate mechanistic models that quantify material degradation.
and Application	Establish the relationship between those mechanisms and models, and the loss of PEMFC
	performance.
4.0 Outreach	Conduct outreach activities to disseminate critical data, findings, models, and relationships
Januari	that describe the effects of airborne contaminants on PEMFC performance and durability.

Approach - High Level Plan

The Effect of Airborne **Contaminants on Fuel** Cell Performance and **Durability** Real World Model Contaminant **Operation and Development Outreach** Mitigation **Studies** and **Strategies Application Impurity Empirical** Real World **Identification Operation Models** and Screening Contaminant Mitigation Mechanistic **Strategies Impact Models Cell Recovery** Ex-Situ **Analysis**



Approach - High Level Plan

 Milestones and go/no go decisions are described in a subsequent slide

Approach - Significant Decisions Points

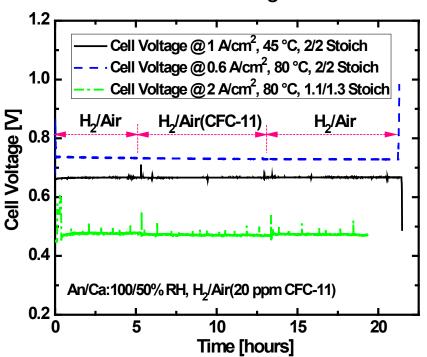
- Milestones at the end of each project year
 - M1 (<u>completed</u>): Prioritize a group of ~10 airborne contaminants of relevance to stationary and automotive fuel cell applications based on
 - Their performance impact (screening results)
 - Occurrence (literature results, industry exchange)
 - M2: Quantify performance loss for at least 4 different contaminants under various operating conditions
 - M3: Quantify spatial variability of performance loss for at least 4 different contaminants.
 Identify principal poisoning mechanism for same
 - M4: Demonstrate successful mitigation of the impact of the most important 4 airborne contaminants
- Go/No go decision criteria at the end of the second project year
 - G1: Identified contaminants (and concentrations) resulting in performance loss ≥ 20 % of initial performance loss
 - G2: Effects of various conditions on cell poisoning quantified. Data reported to modelers
 - G3: Mitigation strategies, restoring cell to 90 % of initial performance, identified for reversible contaminants

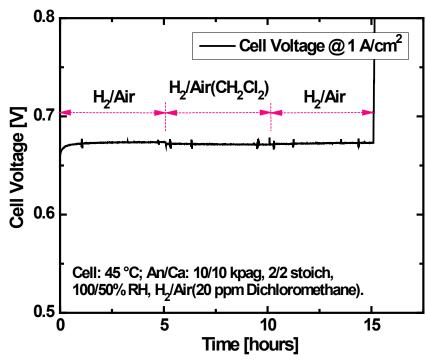
Approach – High Level Plan

- Institution dependent contaminant focus
 - Foreign cations (originating from salts in marine environments, for example) and road side contaminants (C2E2)
 - Airborne contaminants (HNEI)
- Minimizes need for time consuming benchmarking activities
 - Benchmarking already completed (USFCC and a DOE project activities)
 - Different setup designs are needed for each group
 - Foreign cations and road side contaminants require liquid or solid injection
 - Airborne contaminants require gas injection
- The project ensures that all contaminant sources are studied
 - "Effect of System and Air Contaminants on PEMFC Performance and Durability" project (project ID # FC048) focuses on system sources
 - Fuel cell contaminants were studied in previous DOE projects (project ID # FC045, FC046, FC047)

Technical Accomplishments and Progress - Contaminant Identification

- 187 airborne contaminants, 68 indoor pollutants and 12 roadside species were identified using multiple information sources
- A down selected list was created from the airborne contaminants and indoor pollutants on the basis of the following criteria:
 - Presence at a significant level
 - Expectation of reactivity within the fuel cell
 - Absence of recorded data
 - Largest range in chemical functionalities
 - Compound toxicity
 - Represents a safety concern due to the use of concentrated mixtures
- Future selections will be reviewed by an interest group
 - DOE laboratories, FCHEA (formerly NHA and USFCC), OEM Fuel Cell Tech Team, Carrier, durability working group, DOD,
 SAE, NIST, Praxair, Linde, Air Liquide, CaFCP, CaSFCC

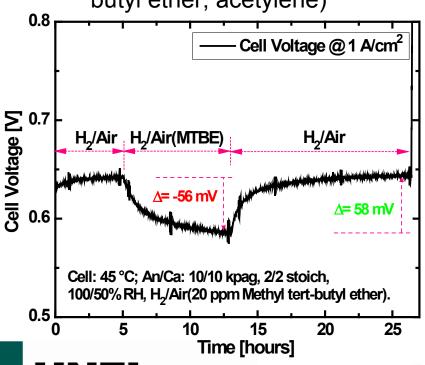

Technical Accomplishments and Progress - Contaminant Identification

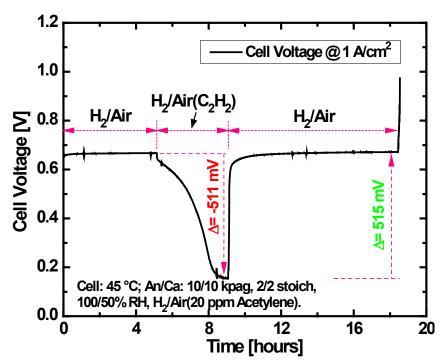

Selected and tested (highlighted in green) contaminants

Contaminants		Annual maximum concentration (ppm C)*			Source	OSHA PEL	
Hydrocarbon functionality	Common name	Formula	1 h average	3 h average	24 h average	Source	(ppm)**
N/A	Ozone	O ₃	0.197			Chemical manufacture reagent, bleaching agent,	400
Alcohol	2-Propanol	CH ₃ CH(OH)CH ₃	0.65 0.08 u	μg/m³ (indo ια/m³ (indo	oor max) or mean)	Cleaning fluid and solvent	No limit
Aldehyde	Acetaldehyde	CH₃CHO	0.022 0.007	μg/m³ (ind ua/m³ (indo	oor max) oor mean)	Chemical manufacture precursor	200
Alkene	Propene	C ₃ H ₆	0.625	0.0819	0.102	PP synthesis precursor and petrochemical feedstock	No limit
Alkyne	Acetylene	C₂H₂	0.117	0.0376	0.0386	Welding fuel and chemical manufacture precursor	No limit
Benzene	Toluene	C ₆ H ₅ CH ₃	0.296	0.0545	1.17	Solvent and industrial feedstock	200
Phenol	Bisphenol A	$(HOC_6H_4)_2(CH_3)_2C$			17 pg/l	Epoxy resin and plastic precursor	0.5
Ketone	Acetone	CH₃COCH₃		0.190	0.2022	Solvent and polymer synthesis precursor	750
Ether	Methyl tert-butyl ether	(CH ₃) ₃ COCH ₃		0.0017	0.0192	Gasoline additive and solvent	N/A
Ester	Vinyl acetate	CH ₂ CHOOCCH ₃			0.102	PVA synthesis precursor	10
Lotor	Methyl methacrylate	CH₂CCH₃COOCH₃			0.00267	PMMA synthesis precursor	100
Nitrogen compound	Acetonitrile	CH₃CN			3.1	Butadiene production solvent	40
Polycyclic aromatic	Naphthalene	C₁₀H ₈			0.05	Mothball primary ingredient	No limit
	Dichloromethane	CH ₂ Cl ₂		8.7x10 ⁻⁴	0.124	Paint and degreaser solvent	25
Halogen compounds	Chlorobenzene	C ₆ H₅Cl			0.0026	Commodity production intermediate	75
	Bromomethane	CH₃Br			0.0066	Solvent and chemical manufacture precursor	N/A
	CFC-11	CCI₃F			2.7x10 ⁻⁴	Former refrigerant	1000

* unless otherwise noted. ** PEL: permissible exposure limit

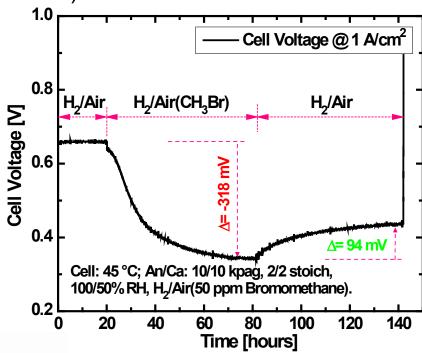
- Several cell performance contamination and recovery behaviors were observed
 - Absence of a significant effect (CFC-11, dichloromethane)



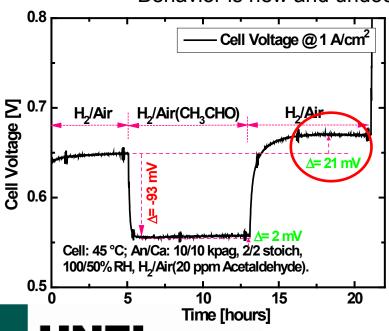


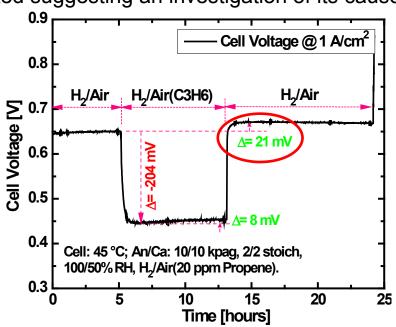
Several cell performance contamination and recovery behaviors were observed

 A significant contamination effect but complete recovery (methyl tertbutyl ether, acetylene)



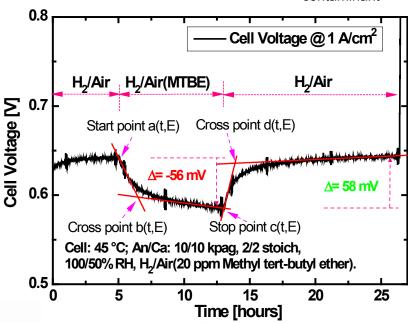
- Several cell performance contamination and recovery behaviors were observed
 - A significant contamination effect and incomplete recovery (bromomethane)





- Several cell performance contamination and recovery behaviors were observed
 - A significant contamination effect and a recovery exceeding the initial loss (acetaldehyde, propene)

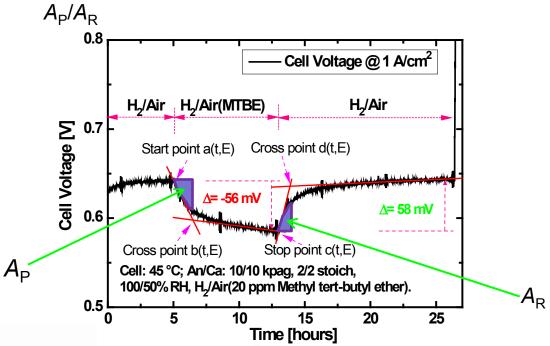
Behavior is new and undocumented suggesting an investigation of its cause



Hawai'i Natural Energy Institute

- Two methods were considered for contaminant ranking
 - Method 1 relies on the combination of steady state contamination and irrecoverable performance losses and corresponding time scales
 - The selection criterion SC₁ is:

 $(a(E)-b(E))^2(a(E)-d(E))(d(t)-c(t))/c_{contaminant}(d(E)-c(E))(b(t)-a(t))$



- Two methods were considered for contaminant ranking
 - Method 2 relies on the combination of the energy lost to contamination and regained during self-recovery
 - The selection criterion SC₂ is:

- Larger SC_1 and SC_2 values mean more significant performance losses
- Only 9 contaminants appear on the table because 2 did not lead to significant performance losses (ranked at the lowest interest level)
- The range in values is larger for SC₁ (more sensitive parameter)
- The top 4 contaminants are almost the same for SC₁ and SC₂
 - A more detailed analysis will be completed to assess SC_1 and SC_2 differences

Contaminant	SC ₁	SC₂
	(V ² ppm ⁻¹)	
Acetaldehyde	-2.40 x 10 ⁻⁴	-0.231
Acetone	-2.90 x 10 ⁻⁷	0.040
Acetylene	3.13 x 10 ⁻⁸	30.623
Bromomethane	4.04 x 10 ⁻³	7.434
Iso-propanol	-2.55 x 10 ⁻⁷	17.796
Methyl Tert-Butyl Ether	2.38 x 10 ⁻⁵	2.054
Propene	-3.08 x 10 ⁻⁵	0.920
Toluene	5.38 x 10 ⁻⁴	0.349
Vinyl Acetate	-4.42 x 10 ⁻⁵	1.1940

Collaborations

- HNEI (prime university organization)
 - All tasks with a focus on airborne contaminants
 - Contaminant studies, real world operation and mitigation strategies, model development and application, outreach
- C2E2 (university sub-contractor)
 - All tasks with a focus on foreign cations and roadside contaminants
 - Contaminant studies, real world operation and mitigation strategies, model development and application, outreach
- UTC Power (industry sub-contractor)
 - Contaminant identification and test protocols development support, experimental data and analysis review, SEM/TEM analysis
- Ballard Power Systems (industry sub-contractor)
 - Contaminant identification and test protocols development support, experimental data and analysis review

Proposed Future Work

- Fiscal year 2011
 - Complete contaminant screening tests and repeat with lower humidification reactant streams (liquid water scavenging effect?)
 - Concentrated streams are used to accelerate tests and therefore precautions need to be implemented to properly contain toxic species and avoid damage to personnel and equipment
 - Investigate the cause of the recovery exceeding the contamination performance loss (acetaldehyde, propene)
 - Determine which contaminant selection criterion will be used for down selection
 - Initiate modeling activities
- Fiscal year 2012
 - M2: Quantify performance loss for at least 4 different contaminants under various operating conditions

Summary

Relevance

 The project fills a knowledge gap and minimizes commercialization uncertainties; the impact of unknown airborne species on fuel cell system performance

Approach

- Mitigation strategies will be based on a fundamental understanding of contamination effects
- The development of validated predictive models will accelerate the future study of other species considered relevant
- Technical accomplishments and progress
 - A list of airborne contaminants originating from large industrial operations was created by minimizing effort duplication and maximizing its applicability range
 - 11 contaminants were tested revealing a wide range in behavior (negative but also positive)
 - Two quantitative contaminant ranking criteria were proposed

Collaborations

- Fuel cell industry representatives involvement adds relevance to project activities
- Proposed future work
 - The screening of selected contaminants will be completed and a selection criterion will be used to down select 4 contaminants for detailed studies

