

### Zia Mirza

# Honeywell Aerospace May 9, 2011

### Project ID FC066

This presentation does not contain any proprietary, confidential, or otherwise restricted information

# Overview

### Timeline

- Project start FY03
- Program stopped FY05/FY06
- Project end date Mar. 2011
- 90% complete

### Budget

- Total project funding
  - DOE share \$3,250K
  - Honeywell \$812K
- DOE funding in FY10
  - \$340K
- DOE funding for FY11
  - \$0K

### Barriers

- Develop efficient, cost-effective integrated thermal/water management system that effectively uses the fuel cell waste heat and water
- Develop advanced cooling/heat exchanger
- Reduce weight and cost of the components

### Partners

- Argonne National Lab
- FreedomCAR Tech Team

# **Objectives**

- Test two select full-size radiators to meet the 80 kW fuel cell cooling requirements
- Validate performance of humidification devices sized for 80 kW fuel cell
  - Test Emprise enthalpy wheel
  - Test Perma Pure sub and full-scale membrane modules
  - Test planar membrane module
- To improve PEM fuel cell performance and life, the humidity of inlet air stream should be maintained at a high level (currently 60%)
- Check select humidifier reliability for 5,000 cycles
- Thermal and Water Management program final report

# Approach

- The approach is to provide humidity >60% (at 80 C) to the PEM fuel cell stack inlet air for increased performance and life
- Eliminate need for external water source by transferring water from stack exit air stream to inlet stream
- Test humidification systems which can efficiently transfer water from one air stream to the other
- Design, build and test high-performance full-size radiators to meet the 80 kW fuel cell stack cooling requirements
  - Increase performance required to dissipate low-quality heat
  - Optimize the weight, size, and cost
- Conduct reliability testing of two select humidifiers in FY11/12.
- Submit program final report

Thermal and Water Management System Program will end this year

# Accomplishments for FY10/11

- Thermal Management part of the program was successfully completed and test report was submitted
- Last two humidifier were performance tested
  - Sub scale Perma Pure membrane module
  - Full scale planar membrane module
- Program plan for the FY2011/12 was developed and approved by DOE Program Office
- Two humidification systems were down-selected for reliability testing
  - Enthalpy Wheel

Honeywell

- Planar membrane humidifier

### **Testing of all humidification devices successfully completed**

# **PEM Fuel Cell Humidification Options**



# **Enthalpy Wheel**

Supplied by Emprise, Kennesaw, GA

- Water adsorbed and de-sorbed in a rotating wheel
- Not sensitive to temperature
- Power: < 100W, Seal leakage < 1% of process air</li>
- Volume 171 cu in, weight 17 Kg and size 8" Dia, 6" length wheel





Honeywell.com

## Honeywell

# Membrane Module

- Supplied by Perma Pure, Cincinnati, OH
- Membrane selectively allows water to pass through
- Performance sensitive to temperature
- Volume 6" Dia, 10" length cartridge
- 7,000 fibers, 0.045" OD and 11 in in<sup>2</sup>
  Nafion<sup>®</sup>





## Full-scale

## Honeywell

# Planar Membrane Humidifier

- Supplied by dpoint Technologies Inc., Vancouver Canada
- Gore membrane selectively allows water to pass through
- Performance sensitive to temperature
- Planar humidifier has advantage in manufacturing cost and installation over circular unit
- Max operating temp. 176°F (80°C), pressure of 35 psi & flow 12 lb/min
- Size 11.5" length, 9.3" width, and 5.4" height





# **Humidification Test Stand**

- Test stand was used for performance testing of half and full- scale humidification system testing
- The test stand is being modified for reliability testing of select humidification systems





**Humidity Sensors** 

Sub-scale membrane module under test

# **Humidity Systems Test Stand Schematics**



#### **Nomenclature**

**Ppm**: Pounds/minute; **RPM:** Revolution per minute **Pri Out**: Air stream (2) from humidifier to fuel cell; **UUT:** Unit under test **Sec In**: Air stream (3) to humidifier from fuel cell

# Planar Membrane Module

#### Water Transfer Rate vs. Total Water In



**Planar membrane water transfer rate is between 20-37%** 

# Planar Membrane Module

#### Water Balance Error vs. Total Water In



Planar membrane average water balance error is about 15%

# **Enthalpy Wheel Module**



#### **Enthalpy wheel module water transfer rate reaches 70+%** with 30+RPM at low flow rate

## Honeywell

# Enthalpy Wheel Module

#### Water Balance Error vs. Enthalpy Wheel RPM



### Higher Flow and Speed (rpm), Less Water Balance Error

# Full Scale Membrane Module



#### Full scale membrane module water transfer rate is between 20-33%

# Full Scale Membrane Module

#### Water Balance Error vs. Total Water In



Dry air flow rate varied from 0.9 - 12 lbs/min

Higher Flow , Less Water Balance Error

# Subscale Membrane Module



#### Water Transfer Rate vs. Total Water In

#### Subscale membrane module water transfer rate is between 20-37%

# Subscale Membrane Module

#### Water Balance Error vs. Total Water In



For high flow cases (8-12ppm), water balance errors are 12-15%

## Honeywell

# Humidification Systems Test Results Summary

- Planar Membrane Module
  - Average water balance error for all the test points was 15%
  - Water transfer rate for the entire air flow range was between 20-37% vs. 60% requirement
- Enthalpy Wheel
  - Water balance errors for all test points were under 15% except at high flow rate with low speed
  - Water transfer rate at high air flow rate met the requirement of 60%
- Full Scale Membrane Module
  - Water balance error at high flow rate was 10-15%, however, at low flow rate the balance was poor
  - Water transfer was between 20-33% similar to other membrane modules
- Sub Scale Membrane Module
  - Average water balance error was 13%
  - Water transfer rate for the entire air flow range was between 20-37%

### **Enthalpy Wheel performance was better than membrane humidifiers**

## Honeywell

# Thermal Management Program Summary

- Four sub-scale radiators with different fins configuration were built and tested
- Performance model validated, manufacturability lesson learned and documented
- Two down-select fin configurations; full-scale radiators built
- Test results validated the performance model
- Test results were used in PEM fuel cell system model by Argonne National Lab.
- Radiators estimated cost by Honeywell compared well with independent consultant estimates (\$50 vs. \$58)
- Submitted radiators final test report

### Thermal Management program was successfully completed

# **Full-Scale Radiators**

Size of the radiator: 27.6" width, 17.7" height, and 1.3" depth. Estimated weight of full-scale louver and microchannel radiator (with plastic tanks) will be 10 and 13 lbs respectively



### 40 fins/in. Microchannel Fins

18 fins/in. Louver Fins

Full size microchannel radiators built successfully

# **Radiator Test Set-up**



**Radiator Instrumented** 



**Coolant Circulating Cart** 

## Full-Scale Advance Louver Fin Radiator Performance

The water-glycol circulating rate 2.25 kg/sec (maximum allowable 2.5 kg/sec.)



Effectiveness and pressure drop test data in good agreement with model predictions

## Honeywell

# Full-Scale Microchannel Fin Radiator Performance

The water-glycol circulating rate was 2.25 kg/sec (maximum allowable 2.5 kg/sec.)



**Effectiveness and pressure drop test data in good agreement with model predictions** 

## Collaborators

Argonne National Laboratory

Honeywell

- Coordination of all technical activities including requirements definition, technical data interchange, and support to overall PEM Fuel Cell model development
- FreedomCAR Tech Team
  - Participate in program reviews
- Emprise Corporation
  - Designed and built humidification test stand and Enthalpy Wheel. Active participant in improvement of test stand and enthalpy wheel design

Federal Laboratory

US Council for Automotive Research

Industry

# FY11/12 Schedule and Major Milestones

| ID |              | Task Name                        | Jarter |            | 1st Quarter |     |     | 2nd Quarter           |      |          | 3rd Quarter |      |     | 4th Quarter |       |            | 1st Q |
|----|--------------|----------------------------------|--------|------------|-------------|-----|-----|-----------------------|------|----------|-------------|------|-----|-------------|-------|------------|-------|
|    | 0            |                                  | Nov    | Dec        | Jan         | Feb | Mar | Apr                   | May  | Jun      | Jul         | Aug  | Sep | Oct         | Nov   | Dec        | Jan   |
| 1  | $\checkmark$ | Go-forward plan approval         |        | <b>+</b> 1 | 2/9         |     |     |                       |      |          |             |      |     |             |       |            |       |
| 2  | $\checkmark$ | Finalize Test Plan with ANL      |        |            |             |     |     |                       |      |          |             |      |     |             |       |            |       |
| 3  |              | Modify Test Stand                |        |            | •           |     | ŀ   |                       |      |          |             |      |     |             |       |            |       |
| 4  |              | Testing of Humidifier 1          |        |            |             |     |     |                       |      |          |             |      |     |             |       |            |       |
| 5  |              | Data Analysis                    |        |            |             |     | 4   |                       |      |          |             |      |     |             |       |            |       |
| 6  |              | Testing of Humidifier 1 complete |        |            |             |     |     |                       | 4/30 | )        |             |      |     |             |       |            |       |
| 7  |              | Modify Test Stand                |        |            |             |     |     |                       | ļ    | _        |             |      |     |             |       |            |       |
| 8  |              | Testing of Humidifier 1          |        |            |             |     |     |                       |      |          |             |      |     |             |       |            |       |
| 9  |              | Data Analysis                    |        |            |             |     |     |                       |      | <b>\</b> |             |      |     |             |       |            |       |
| 10 |              | Testing of Humidifier 2          |        |            |             |     |     |                       |      |          |             | 7/29 |     |             |       |            |       |
| 11 |              | Program Final Report Draft       |        |            |             |     |     |                       |      |          |             | :    | :   | R           |       |            |       |
| 12 |              | Incorporate DOE comments         |        |            |             |     |     |                       |      |          |             |      |     |             |       | <b>_</b> _ |       |
| 13 |              | Data Items                       |        |            |             |     |     | <u> </u>              |      |          |             |      |     |             |       | -          |       |
| 14 |              | First Quarterly Report           |        |            |             |     |     | \<br>\<br>\<br>\<br>\ | 1/14 |          |             |      |     |             |       |            |       |
| 15 |              | Second Quarterly Report          |        |            |             |     |     |                       |      |          | 7           | //13 |     |             |       |            |       |
| 16 |              | Third Quarterly Report           |        |            |             |     |     |                       |      |          |             |      |     | ↑ 1         | 10/15 |            |       |
| 17 |              | Final Report submittal           |        |            |             |     |     |                       |      |          |             |      |     |             |       | ۵          | 12/20 |

# **Go-Forward Plan**

### FY 2011/12

- Test humidification systems for reliability
  - Modify the test stand for reliability testing
  - System will be tested for 5,000 cycles at full scale fuel cell operating conditions
  - The humidity will be cycled from 0 to 80% at 2 minutes intervals
- Submit program final report