MATERIALS AND MODULES FOR LOW-COST, HIGH PERFORMANCE FUEL CELL HUMIDIFIERS

Principal Investigator: William B. Johnson W. L. Gore & Associates, Inc. May 12, 2011

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

<u>TIMELINE</u>

✓ Start date: 4/01/2010
✓ End date: 3/31/2012
✓ ~40% complete as of 03/15/2011

<u>BUDGET</u>

✓DOE:	\$1,492,163
✓ Contractors:	\$373,040
✓ Phase 1 DOE Funds obligated:	\$817,701
✓ Currently under budget by ~20%	

DOE PLAN BARRIERS ADDRESSED:

✓ System cost, fuel cell performance and durability

✓ Task 7, "Develop balance of plant components"

B - Reliable, cost-effective fuel cell systems.

E - System thermal and water management.

A and C (indirectly) – Fuel cell durability and performance.

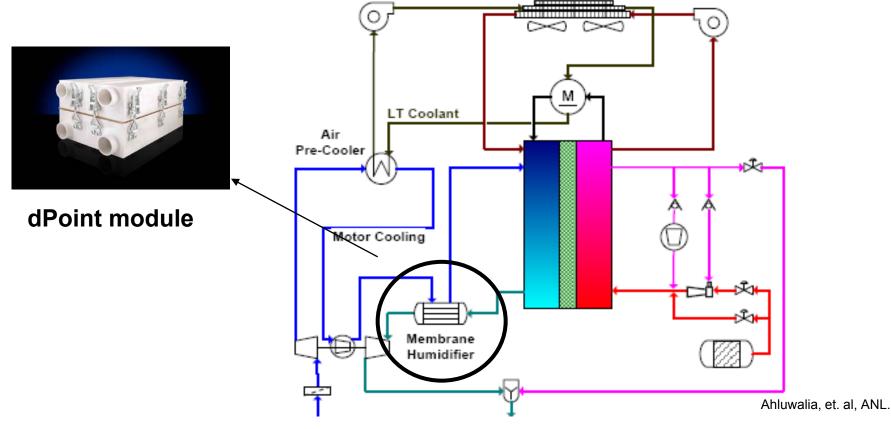
<u>TEAM</u>

✓ Prime - W. L. Gore & Associates, Inc.

✓ Subcontractor - dPoint Technologies

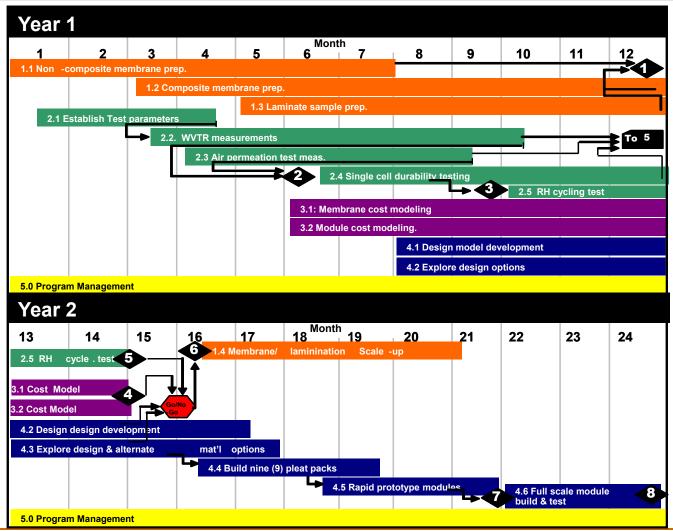
Objectives

Demonstrate a durable, high performance water transport membrane; and a compact, low-cost, membrane-based module utilizing that membrane for use in automotive, stationary and/or portable fuel cell water transport exchangers.


Relevance

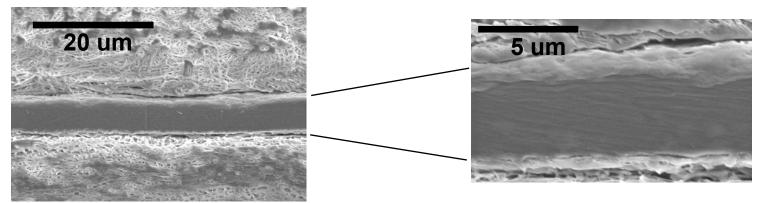
More efficient, low-cost humidifiers can increase fuel cell inlet humidity:

- Reduce system cost and size of balance of plant.
- Improve fuel cell performance.
- Potentially decrease size of fuel cell stack by running under wetter conditions.
- Improve fuel cell durability.


Background

Illustrative block diagram of fuel cell system

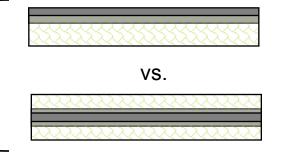
Approach: Timeline and Milestones

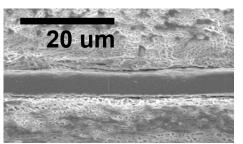

Approach: Plan

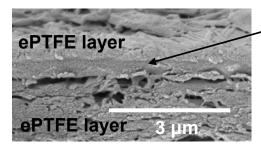
Completion	
75%	Go/No-Go 15 months June 2011 • Module Volume < 8 L • Module Cost < \$150 • Membrane life > 5000 h hot soak • Membrane life>1000 h RH cycling • Membrane > 0.030 g/cm ² min
75%	
60%	
10%	
~45%	
	75% 75% 60% 10%

Approach: Technical

• Membranes: Utilize unique, high performance, GORE[™] Humidification Membranes

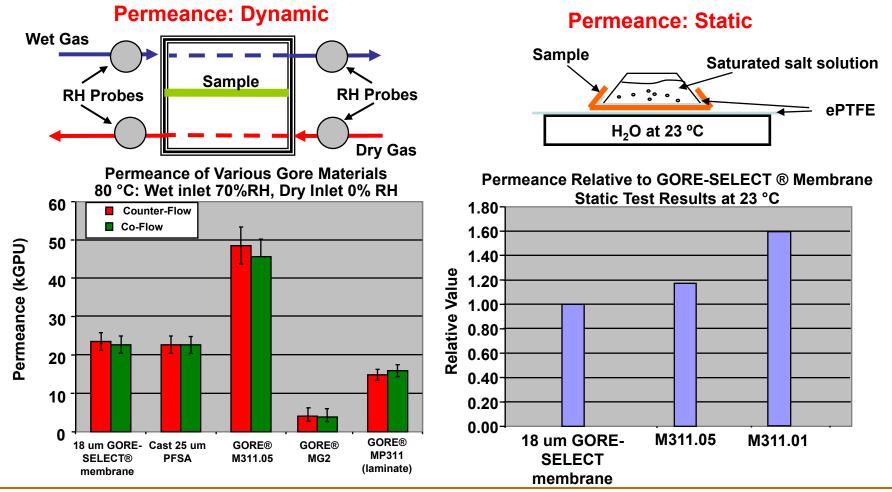

 Modules: Optimize flow field, pleat geometry and module design to take advantage of very high transport rate materials, while maintaining low-cost assembly process



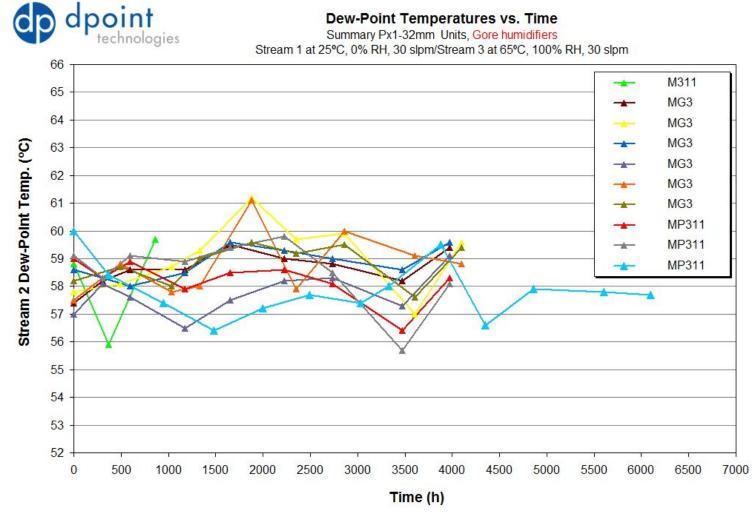


Technical Accomplishments Task 1: Materials Preparation

- Wide range of materials made and tested including variations in:
 - ✓ PFSA ionomers with various equivalent weights
 - ✓ Hydrocarbon ionomers
 - ✓ Laminate structures –
 - ✓ Microporous supports
 - ✓ Ionomer layer thickness

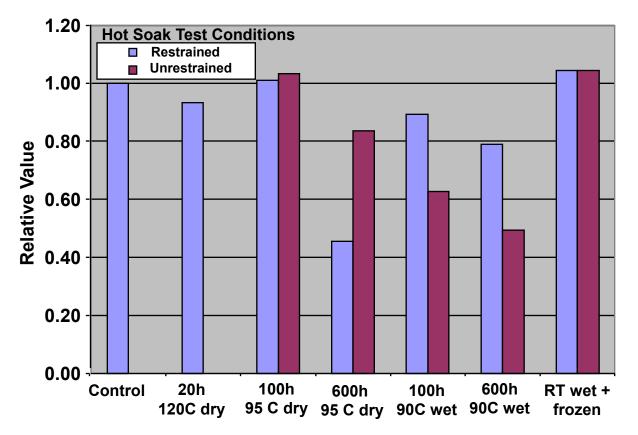


0.3 µm ionomer layer

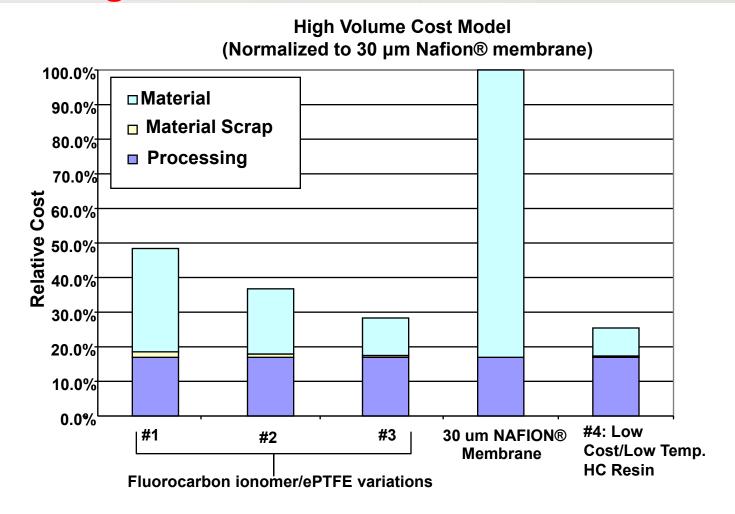


Technical Accomplishments Task 2: Water Transport Measurements

Technical Accomplishments Task 2: Membrane Durability Testing

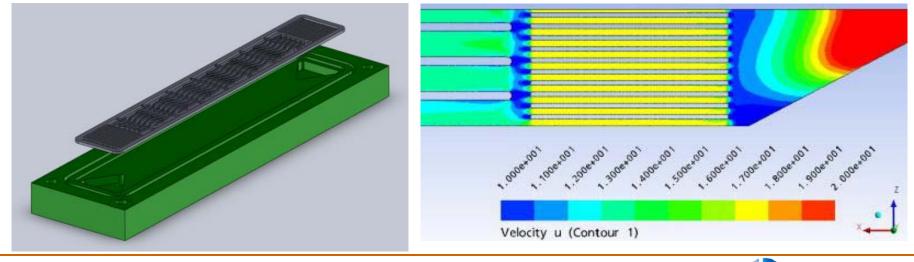


Technical Accomplishments Task 3: Membrane Durability


Hot Soak Durability, M311 Static Permeance Testing, 23 °C

Note: All membranes were air impermeable before and after testing.

Technical Accomplishments Task 3: High Volume Membrane Cost Estimates



Technical Accomplishments

Task 4: Module Design, Development and Testing

- Analysis of dpoint PX, DX designs, and ERV's, heat exchangers, literature review, heat and humidity design consultants, and brainstorming yielded ~40 module concepts that could meet cost and transport targets.
- CFD modeling, and results from small prototype builds using 10 different flow fields leads to following conclusions:
 - Small linear channels yield the best transfer per pressure drop than any other option.
 - ✓ Small pitches make volume requirements easier to meet.
 - Cross-flow designs has many desirable features, and fewer drawbacks than other design alternatives.

dpoint technologies

Technical Accomplishments

Task 4: Module Design, Development and Testing (cont)

- Currently constructing our first cross flow humidifier module
 - ✓ Subscale, 10 cm square, 0.8mm pitch, 40 layers, 0.4 m² membrane.
 - Preliminary flow field testing at 80 °C/75%RH on this design shows promising results.
 - ✓ Based on limited single cell testing, membrane area of ~1.3m² required for full scale module flow and transfer requirements.

Collaborations

Subcontractor

- dPoint Technologies
 - Design and build low-cost module using new membrane

Partners providing Input at no cost

- ✓ Automotive OEMs have provided data on conditions
 - GM, Ford, Daimler, Volkswagen, etc. under NDA
- Argonne National Laboratory modeling of Gore membranes in humidifier modules.
- ✓ General Motors Corp. effect of contamination on water transport behavior of Gore membranes.

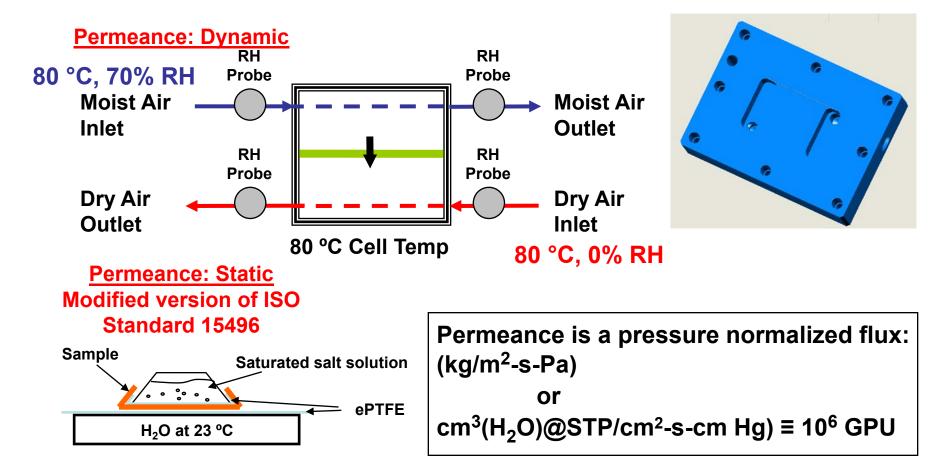
Future Work

Membrane materials and testing

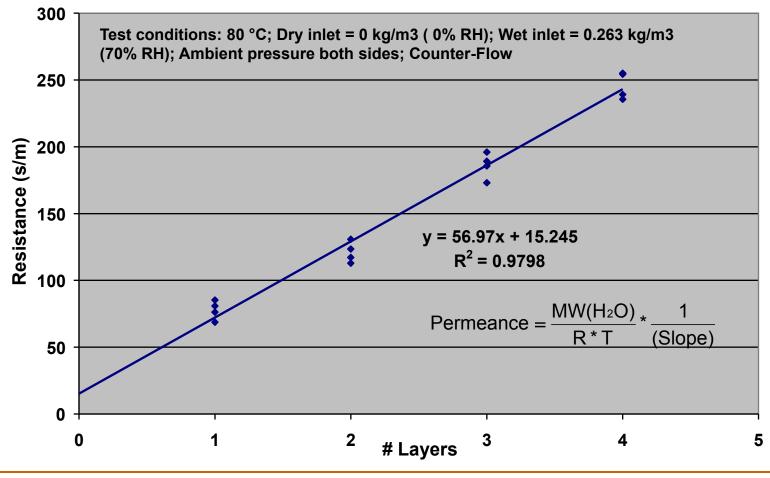
- ✓ Extend static testing to 80 C for QC and to increase test throughput.
- ✓ Continue durability testing: hot soak, RH cycling, and contamination.
- Down-select to primary membrane composition and type and scale-up to m² manufacturing
- Module Design, Build and Testing
 - ✓ Refine and test initial module designs
 - Built at smallest manufacturable pitch with short channels.
 - Available pressure drop will be used to generate mixing within flow or increase footprint, increasing performance.
 - Use rapid prototype plates to speed design iterations.
 - ✓ Module cost models using inputs from Gore on membrane cost.
 - ✓ Build one full scale module with best membrane and module design.

Project Summary

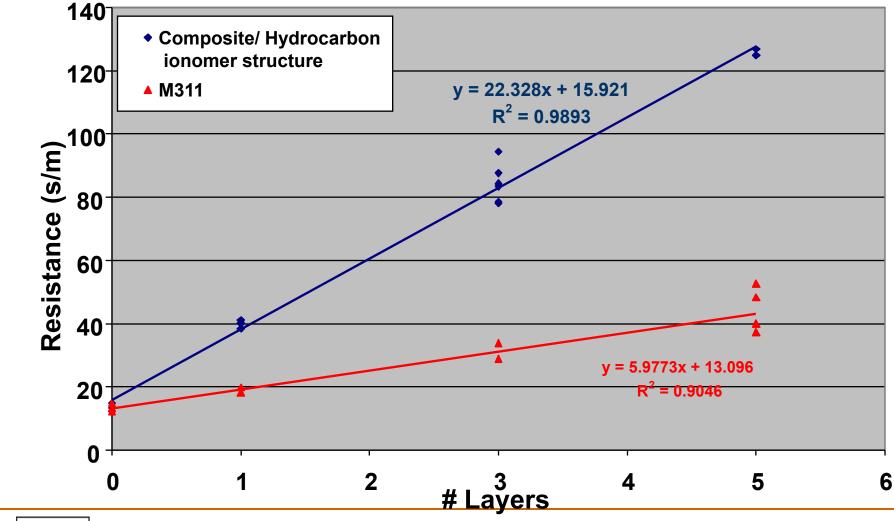
Objective:	Durable, high performance water transport membrane; and a compact, low-cost, membrane-based module	
Relevance:	Reduce system cost and size of balance of plant, AND improve fuel cell performance.	
Approach:	Utilize unique new gore membranes in modules optimized for high performance and low cost.	
	➤Wide range of new composite membranes prepared and tested.	
	New high throughput water transfer test developed.	
Technical	Initial durability testing completed, little performance degradation seen at 65 C	
Progress:	Initial module design and prototyping activity has yielded a design that appears capable of meeting all the module criteria.	
	High volume membrane cost estimates should be low enough to allow team to meet \$150 high volume module target.	
	dPoint (partner in testing and module design and build).	
Collaborators:	Argonne National Laboratory (No cost collaborator in system modeling).	
	GM (No cost collaborator in effect of contaminants on transport behavior).	
	Complete durability testing.	
Future Work:	Down select final membrane material.	
	≻Module cost modeling.	
	Finish preliminary module design and test, build final full scale module.	



Technical Back Up Slides


Testing Protocol

J = Flux = MVTR (kg/m²-s) \propto Mass(H₂O) in dry outlet



Sample Data GORE-SELECT® Membrane Dynamic High Temperature Test

Permeance from Static Room Temperature Test (Modified ISO 15496 Protocol)

Initial Correlations Dynamic vs. Static Testing

	Static Result	Dynamic Result
Permeance(M311)*	203100 ł 25400	14750 ± 30700
Test Conditions	23 °C	28 °C
RH Wet	100%	
RH Dry	23%	
Delta RH	77%	57%

* Error bars are 95% confidence intervals

Why are RT Permeance Values higher than high temperature values?

$$Permeance = \frac{MVTM}{\Delta P(H_2O)} \sim \frac{D(H_2O)}{P_{vap}} \sim \frac{exp(Ea/RT)}{exp(\Delta H_{vap}/RT)}$$

 $\Delta H_{vap} = 41 \text{ kJ/mol}$ E_a ~ 20 kJ/mol for D(H₂O) in PFSA

→ As T \downarrow , P_{vap} $\downarrow \downarrow$ and D(H2O) \downarrow , so Permeance

