

21st Century Renewable Fuels, Energy, and Materials Initiative

Susanta K. Das and K. Joel Berry

Center for Fuel Cell Systems and Powertrain Integrations Kettering University, Flint, Michigan, USA. DOE Annual Review: May 9-13, 2011

Project ID # FC078

Overview

Relevance

Overall	• Development of an improved high-temperature fuel cell		
Objectives	membrane capable of low-temperature starts (<100°C) with		
(2010 – 2011)	enhanced performance.		
	• Development of a 5kWe novel catalytic flat plate steam		
	and integrate with high-temperature fuel cell systems.		
	• Development of an improved oxygen permeable membrane for high power density lithium-air batteries with simple control systems and reduced cost.		
	• Development of novel high energy yield agriculture bio-crop (Miscanthus) for alternative fuels with minimum impact on human food chain.		
	• Extend math and science alternative energy educator program to include bio-energy and power.		

Plan and Approach

Task 1: High temperature fuel cell membrane

- Increased proton conductivity than peer
- Improved durability and thermal stability
- Performance evaluation

35% Completed

Completed

45%

Completed

40%

Task 2: 5kWe catalytic flat plate fuel reformer

- CFD study of catalytic flat plate reformer
- Design and build the reformer prototype
- Test and evaluate the performance

Task 3: High power density Lithium-Air battery at a reduced cost.

- Optimize the combination of electrolyte that is best suitable for Li-air battery
- Design and build the prototype
- Test of prototype for durability and efficiency

Task 4: Research on high energy yield agriculture bio-crop (Miscanthus)

- Complete IdSK 4: Reserved vield agric (Miscanthus)
 Literature survey
 - Develop energy- and economic model
 - Identify methods to produce alternative fuels from bio-crop (Miscanthus)
- 30% Completed
- Task 5: Alternative energy education program to include bioenergy and power.
 - An educational module preparation incorporating the project results for Bio-Power education

Approach Overview for High Temperature PEM Membrane

• We used novel patented polymer synthesis technology to prepare robust electrolyte for high temperature PEM fuel cell

Approach Overview for CFD flat plate reformer Modeling

Length of the channel 30cm
Width of the channel 2mm
Wall (flat plate) thickness 50µm

Catalyst layer	
Thickness	20*10 ⁻⁶ m
Pore radius	10*10 ⁻⁹ m
Porosity	0.4
Tortuosity	4
Thermal conductivity	0.4 W/m.K
Density	2355 kg/m ³
Solid wall	
Thickness	0.0005m
Thermal conductivity	25 W/m.K

Catalyst containing15.2% Ni supported on magnesium spinel.

Approach Overview for Lithium-Air Battery

• Schematic Representation of The Proposed Lithium-Air Battery Cap **Air Cathode** Electrolyte Lithium Anode Finished Lithium-Air Al Foil Battery Spacer **Cell Casing** Wave Spring

Approach Overview for Biofuel from High Yield Energy Crop

• Approach for biofuel from high energy yield agriculture crop

Accomplishments/Progress

- Optimization of high temperature membrane casting protocol
 - Three control *m*-PBI-PPA membranes have been cast to date
 - A nitrogen flow system was found to be preferable to a closed nitrogen system
 - Necessary to drive off water to shift the equilibrium toward the desired PBI product
 - Storage of PPA under rigorously anhydrous conditions was also found to be key
 - The quality of the film was related to the reaction time (mass of PBI)

> Necessary to determine optimum reaction time

Transverse temperature difference in both reformer and combustion side

- In a conventional steam reformer Tg is often greater than 250°K whereas here it is less than 30°K.
- Virtually no heat loss at the very end section of the reformer.

• Comparison of conductivity among ceramic and polymer electrolyte for Lithium-Air Battery

• Ceramic electrolyte: Li₂O, Al₂O₃, GeO₂, and P₂O₅

• LAGP disc before sintering

• LAGP disc after sintering

• Polymer electrolyte: PEO, LiTFSI, BN/Li₂O

• PC (BN) disc

• PC(Li₂O) disc

(a) Ceramic and polymer electrolyte sample preparation.

(b) Conductivity as a function of temperature for ceramic and polymer electrolyte.

- •The ceramic electrolyte has moderate conductivity at reduced temperature.
- The polymer electrolyte shows higher conductivity above 35°C.
- The big difference in the conductivity among the polymer samples might be attributed to the poor quality of the Pt coating on the surface of the discs.

• Activation Energy in Lithium-Air Electrolyte

Temperature (°C)	Ceramic 1 Conductivity (10 ⁻⁴ S/cm)	PC(Li ₂ O) 2 Conductivity (10 ⁻⁴ S/cm)
24	3.18	1.78
35	4.90	4.92
40	5.64	7.11
50	7.49	14.1
60	9.36	23.8
70	11.6	35.6
80	13.7	54.4
90	15.6	71.2
100	18.0	84.2

(i) Temperature dependent conductivity of Ceramic 1 and $PC(Li_2O)$ 2

• Polymer electrolyte has higher activation energy than ceramic electrolyte

• Lithium-Air Battery Fabrication and Characterization

• Testing of Lithium-Air Battery Performance

• An all solid cell was fabricated utilizing the Ni/C/LAGP based cathode, the $PC(Li_2O)/LAGP/PC(BN)$ solid electrolyte, and a lithium metal anode

• **Primary test result:** The highest OCV observed was 2.74 Volt at room air temperature and the cell lasted 16 days before the voltage dropped to below 2.0 Volt.

Collaboration

PI: Kettering University

Task 2: 5kWe catalytic flat plate fuel reformer

- CFD study of catalytic flat plate reformer
- Design and build the reformer prototype
- Test and evaluate the performance

Co-PI: Michigan Molecular Institute (MMI)

- **Task 1**: High temperature fuel cell membrane
- Increased proton conductivity than peer
- Improved durability and thermal stability
- Performance evaluation

Co-PI: Saginaw Valley State University (SVSU)

- Task 4: Research on high energy yield agriculture bio-crop (Miscanthus)
- Develop energy- and economic model
- Identify methods to produce alternative fuels from bio-crop (Miscanthus)

- Task 5: Alternative energy education program to include bioenergy and power.
- An educational module preparation incorporating the project results for Bio-Power education

Task 3: High power density Lithium-Air battery at a reduced cost.

- Optimize the combination of electrolyte that is best suitable for Li-air battery
- Design and build the prototype
- Test of prototype for durability and efficiency

Future Work

- Future Work (FY2011-FY2012)
 - Performance improvement of High temperature PEM membrane
 - Optimize a membrane electrode assembly (MEA) using PBI-phosphoric acid-POSS nanoadditive proton exchange membrane
 - Test thermal stability and life-cycle sensitivity based on DOE matrix
 - Map membrane conductivity history based on different RH cycles
- Design and build 5kWe catalytic flat plate fuel reformer based on CFD study
 - Design layout of the reformer has to be developed
 - Build the prototype using the optimized layout
 - Test prototype performance and benchmark the results
 - Develop cost analysis for a optimized reformer system

Future Work

• Future Work (FY2011-FY2012)

- Explore other avenues for performance enhancement of Lithium-Air Battery
 - The efforts for the next few quarters will be aimed at the assembly and testing of a working button cell battery utilizing the Ni/C/LAGP based cathode, the PC(Li₂O)/LAGP/PC(BN) solid electrolyte, and a lithium metal anode assembled in a 2032 button cell battery case.
 - Once a working battery is produced, efforts will then be focused on optimizing the processing steps to improve on the battery's performance.
 - Once a reproducible procedure has been identified, batteries with and without the oxygen permeable membrane will be prepared and evaluated under various atmospheric conditions (i.e., different relative humidity values).
- Cost effective procedure for bio-fuel production from high energy yield agriculture crop
 - Economic and technical feasibility of procedures to convert the energy crop, *Miscanthus x giganteous (MXG), into either hydrogen or hydrogen carriers suitable for fuel cell use.*
 - Calculation of optimal combination of bio-fuel production procedures for Miscanthus bio-crop
 - Develop a Bio-Energy education module
 - Math and science alternative energy educator program for bio-energy and power.

Summary

Project Summary

- **Relevance:** Help to develop high temperature PEM fuel cell membrane, Lithium-Air battery and bio-fuel from bio-crop for fuel cell applications
- **Approach:** Using patented polymer synthesis technology for high performance membrane, multi-fuel capable reformer based on CFD study, Lithium-Air battery based on high conductive polymer materials.
- **Technical Accomplishments and Progress:** Advanced roll to roll HTPEM fuel cell membrane manufacturing procedure has been developed. A design layout of multi-fuel reformer is completed. Preliminary test of Lithium-Air battery performance evaluation is completed.

Technology Transfer/Collaborations: Active partnership with **MMI**, **SVSU**, presentations, publication and patents

Proposed Future Research:

Seek answers by identifying factors limiting HTPEM fuel cell performance and Lithium-Air Battery.

Author's Contact

Dr. K. Joel Berry Email: jberry@kettering.edu

Dr. Susanta K. Das Email: sdas@kettering.edu