

Innovation for Our Energy Future

WO₃ and HPA based system for ultra-high activity and stability of Pt catalysts in PEMFC cathodes

2011 DOE AMR May 10, 2011 John Turner jturner@nrel.gov Project: FC084

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

- Start Date: 05/01/2010
- End Date: 04/30/2014
- Percent Complete: 13%

Budget

- Total project funding: \$2.9M
 - DOE share: \$2.6M
 - Contractor share
 - CSM: \$204,315
 - CU: \$54,000
- Funding received in FY10: \$500k
- Funding for FY11: \$500k

Barriers

- Durability
- Cost
- Performance

Partners

- S. George: UC Boulder
- A. Herring: CSM
- S. Hamrock: 3M
- K. Adjemian: NTCNA

Project lead – NREL

(John Turner, Anne Dillon, Katie Hurst, Bryan Pivovar, K.C. Neyerlin, Jason Zack, and Shyam Kocha)

Relevance: Objectives

Improve electrocatalyst, MEA durability, and activity through the use of Pt/WO_3 and HPA modification to approach automotive PEMFC activity (4x increase) and durability targets (5000h/10y).

Enhance Pt anchoring to support

- Suppress loss in Pt ECA under load cycling operations
- Enhance electrocatalytic activity

Lower support corrosion

- Increased durability under automotive startup/shutdown operation.
- Suppress Pt agglomeration/electrode degradation

Simplify system and lower system cost

Partial Mitigation of Startup/Shutdown

•Electrical Control

- Voltage Limiting Device or Shorting Resistor
 - Can limit upper potential to ~ OCV

Gas Flow Control

- Fast gas purge
 - Reduces H₂-Air front time (time @ high V)
- Trickle flow of H₂ @ shutdown
 - Maintains H₂ in anode for longer period
- Low RH air purge @ shutdown
 - Suppression of C corrosion (less H₂O)

Material Control

- Selective HOR electrocatalyst that is a poor ORR catalyst
- Selective electrocatalyst for H₂O splitting over
 - C corrosion
- Need new support materials that are corrosion resistant

R. Shimoi, A. Takahashi, A. Iiyama, Development of fuel cell stack durability based on actual vehicle test data: Current status and future work, SAE International 2009-01-1014 (2009).

These complex operations mitigate the losses partially.

> Can materials solutions eliminate need for complex operations?

DOE Catalyst Support Target & Protocols

Electrocatalyst Support Loss Based on OCV hold

Table 3.4.12 Technical Targets: Electrocatalysts for Transportation Applications					
Characteristic	Units	2005 Status ^a		Stack Targets	
Characteristic		Cell	Stack	2010	2015
Platinum group metal total content (both electrodes)	g / kW (rated)	0.6	1.1	0.3	0.2
Platinum group metal (pgm) total loading ^b	mg PGM / cm ² electrode area	0.45	0.8	0.3	0.2
Cost	\$ / kW	9	55 °	5 ^d	3 ^d
Durability with cycling Operating temp ≤80°C Operating temp >80°C	hours hours	>2,000 N/A ^g	~2,000 ^e N/A ^g	5,000 ^f 2,000	5,000 ^f 5,000 ^f
Electrochemical area loss ^h	0/	00	00	~10	<10
Electrocatalyst support loss ^h	mV after 100 hours @ 1.2V	>30 ⁱ	N/A	<30	<30
Mass activity ^j	A / mg Pt @ 900 mV _{iR-free}	0.28	0.11	0.44	0.44
Specific activity ^j	μ A / cm ² @ 900 mV _{iR-free}	550	180	720	720
Non-Pt catalyst activity per volume of supported catalyst	A / cm ³ @ 800 mV _{IR-free}	8	N/A	>130	300

Protocol based on OCV hold In Subscale Cells

Table 2 Catalyst Support Cycle and Metrics				
Cycle	Hold at 1.2 V for 24h; run polarization curve and ECSA; repeat for total 200h. Single cell 25 - 50 cm ²			
Total time	Continuous operation for 200 h			
Diagnostic frequency	24 h			
Temperature	95°C			
Relative Humidity	Anode/Cathode 80/80%			
Fuel/Oxidant	Hydrogen/Nitrogen			
Pressure	150 kPa absolute			
Metric	Frequency	Target		
CO ₂ release	On-line	<10% mass loss		
Catalytic Activity*	Every 24 h	≤60% loss of initial catalytic activity		
Polarization curve from 0 to <u>>1.5 A/cm</u> ^{2**}	Every 24 h	≤30mV loss at 1.5 A/cm ² or rated power		
ECSA/Cyclic Voltammetry	Every 24 h	\leq 40% loss of initial area		
*Activity in A/mg @ 150kl	a abs backpressure at 900mV iR	-con		
**Polarization curve per US	SFCC "Single Cell Test Protocol	"Sec		

Not intended/designed for non-carbon supports/unmitigated start-stop

http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf

NATIONAL RENEWABLE ENERGY LABORATORY

Accelerated Stress Test Protocol* — Alternative supports.

Possible Accelerated Stress Test

•Simulated start-stop regime •10,000 cycles, H₂|N₂ •RDE & MEA tests possible

Screening Corrosion Test

Fast–RDE only, 0.1 M HClO₄
Evaluation of both support & Pt/support

*DOE Durability Group–subteam for catalyst supports: Shyam Kocha (NREL), Eric Brosha and Mahlon Wilson (LANL)

Electrocatalyst System — Approach

WO _x Support	Corrosion Resistance	Durability	
Catalyst-Support Interaction	Strong BondingHigher Activity	Durability	Activity
HPA Functionalization	 Catalyst Morphology Proton conduction Peroxide scavenging 	Durability	Activity
Electrocatalyst	Uniform distributionSmall particles	Act	ivity

Approach involves strategies to counter electrode degradation under startup/shutdown operation, Pt agglomeration under normal automotive load cycles, and improved activity that together will help **reduce Pt loading and hence lower PEMFC stack cost**.

Select Literature on Oxide Supports

Reference	System Evaluated	Key Results: d _p , ORR Activity
Z. Sun, H. C. Chiu, A.C.C. Tsueng— <i>Univ.</i> <i>Greenwich,</i> UK	10wt% Pt/WO₃/C 0.5M H ₂ SO ₄ ; PTFE electrodes	d _p = 1-3 nm ORR Activity Pt/WO ₃ /C > Pt/C
Shim, Lee, Lee, Cairns LBNL—2001	Pt–WO ₃ /C; Pt–TiO ₂ /C PEMFC Na ₂ WO ₄ impreg. into C, HCl	ORR activity Pt–WO ₃ /C = x3 to Pt/C
Saha, Banis, Zhang, Li, Sun, Cai, Wagner— General Motors	15 mm long, 20–60 nm dia Nanowires W₁₈O₄₉ Grown on carbon microfiber paper	d _p = 2-4 nm ORR activity Pt/W ₁₈ O ₄₉ = x4 to Pt/C
Suzuki, Nakagawa, Ishihara, Mistushima, Ota—Yokohama Nat'nl Univ.	Pt/WO ₃ ; Pt/V ₂ O ₅ , Pt/SnO ₂ ; Pt/Cr ₂ O ₃ ; Pt/GC RF Sputtering onto C	ORR activity $Pt/V_2O_5 > Pt/WO_3 = Pt/C$
Savadogo and Beck Ecole Polytech, Quebec	5%Pt- 40%WO₃ PAFC, 180°C	ORR activity = x2 to Pt/C
Huang, Ganeshan, Popov; — Univ. S. Carolina	Rutile Phase–Nb_{0.25}Ti_{0.75}O₂ 0.5M H ₂ SO ₄ ; RDE	d _p = 3-4 nm ORR Activity Pt/Nb _{0.25} Ti _{0.75} O ₂ = x1 Pt/C

Increased electrocatalytic activities reported in the literature—Suggests possible "Support–Catalyst Interaction"

Approach

Supply WO₃ to CU for Pt ALD deposition

Synthesize WO_3

Supply WO₃ to CSM for HPA modification and Pt deposition

NREL

Charac. WO₃ & Pt/WO₃ for -Conductivity -BET surface area -TEM

CSM – Andy Herring

- 1. Synthesize HPA
- 2. Immobilize HPA to Pt/C
- 3. Prepare Pt nano/C
- 4. Immobilize HPA to C
- 5. Prepare Pt nano/HPA-C
- 6. Immobilize/ Covalently bond HPA to WO₃
- 7. Prepare Pt nano/HPA-WO3
- 8. Prepare Pt nano/HPA-WO3 hybridized with HPA-C

- 1. Prepare Pt nanoclusters on WO₃
- Analyze the structures formed using FTIR, XPS, SEM, TEM, Raman, etc.,
- 3. Measure Pt particle size, BET, etc.,
- 4. Provide samples to CSM & NREL

Electrochemical Characterization

NREL

Technical Accomplishments: Hot-Wire Chemical Vapor Deposition (HWCVD) — Synthesis of WO₃ Metal Oxide Nanoparticles

KEH474870 **300 C** KEH474878 **RT**

The filament is oxidized with a small O₂ partial pressure in Ar to form crystalline nanostructures.

NATIONAL RENEWABLE ENERGY LABORATORY

The stoichiometry of WO_x can be controlled by subsequent oxidation in air

Samples are heterogeneous

-Different oxide phases are made upon oxidation

-The stoichiometry of WO_x may impact subsequent Pt deposition

Technical Accomplishments: Initial ALD of Pt/WO₃

Initial experiments with WO₃ revealed it is very absorptive in IR

Excessive Pt deposition and large agglomerated Pt particles— TEM images.

FTIR Background Absorbance Monitors Metal Deposition

TEM of Pt ALD on TiO₂ IR-Absorbance Change >1.0

Technical Accomplishments: TEMs of improved ALD Pt/ WO₃

140 cycles Room temp KEH474894

Improved Pt deposition on WO₃; Further iterations needed to reduce particle size.

- Non-uniformity of Pt deposition may be due to the mixed W phase material.
- Uniformity higher for WO₃ compared to substoic WO_x.

Pt–ALD on WO_X

Roll to roll (R2R) coating for large area film coatings

Scale-up: Companies

http://www.aldnanosolutions.com/markets/

http://www.sundewtech.com/

Rotary reactor for ALD coating of large batches of particles

Technical Accomplishments: Tungsten Oxide Wet Chemistry Synthesis Pyrolysis of $(((C_4H_9)_4)N)_4W_{10}O_{32}$

WO3 nano rods

Surfactant encapsulated isopolytungstate

 $[(C_4 H_9)_4]N_4 W_{10}O_{32}]$

TBAB

WO42

XRD pattern—as synthesized WO₃ nanorods.

HPA Functionalization to C, Pt/C, WO₃ and Pt/WO₃

- Stabilize nano-metallic particles
- Decompose peroxide
- Alter electrochemistry on Pt surface
- Conduct protons

Immobilized HPAs as Catalyst Supports

HPA functionalization of Carbon black confirmed by EDX spectra

Corrosion Resistance of WO_x and Pt/WO_x

NATIONAL RENEWABLE ENERGY LABORATORY

Technical Accomplishments: CVs & Electrochemical Area

Cu UPD might give a better estimate of ECA, because HUPD region includes charge due to formation of H_xWO_3 as well as spillover effects.

Formation of Hydrogen Tungsten Bronzes ($H_{0.18}WO_3$ and $H_{0.35}WO_3$) $WO_3 + xH^+ + xe^- = H_xWO_3$ (0 < x < 1)

Formation of Substoichiometric Oxides $WO_3 + 2yH^+ + 2ye^- = WO_{3-y} + yH_2O (0 < y < 1)$

P. J. Kuleza, L.R. Faulkner, J. Am. Chem. Soc. 110 (1988) 4905

ORR I-V Curves: RDE electrode ink modification improves activity.

AOP Milestones 2011

- Demonstrate controlled nano-structured Pt placement and loading on WO₃, HPA, or a combination of the two. 12/10 (100% completed)
- Obtain cyclic voltammograms (CVs) and mass activity for Pt on WO₃, HPA, or a combination of the two. 2/28/11 (100% completed)
- Prepare high surface area catalyst electrodes based on tungsten oxide and tungsten-based heteropoly acids (HPAs), test electrochemically in half-cells and compare to the corrosion of typical carbon blacks for PEMFCs up to 1.5 V. 7/31/11 (60% Completed)
- Obtain cyclic voltammograms (CVs) and mass activity for Pt on WO₃, HPA, or a combination of the two with electrochemical surface areas greater than 10 m²/g Pt. 9/30/11 (50% Completed)

Collaborations

- **CU Boulder**: subcontractor University
 - Growth of Pt on WO_x
- **CSM**: subcontractor University
 - Attachment of HPA to Pt/WO₃
- **3M**: subcontractor Company
 - Advice on thin films
- **NTCNA**: consultant Auto Company
 - Support on fuel cell testing

Future Work

- Deposit smaller more uniform Pt particles on WO₃ supports
 - Continue to achieve better control of Pt nucleation and dispersion.
 - Achieve controlled ALD deposition of Pt particles that are ~2 nm in diameter.
- Functionalize Pt/WO₃/C with HPA; morphological control of Pt with HPA
 - Electrocatalysts will be built from the ground up. Nano-structured carbon to be functionalized by HPA to control nano-Pt.
 - Material will be fully characterized morphologically so that structure activity relationships can be established.
- Electronic conductivity of WO_x
 - Conductivity of WO_X of various stoics with and without addition of carbon will be systematically evaluated.
- RDE electrochemistry
 - Optimization of catalyst inks will be carried out to obtain the best dispersions and utilization of catalyst for ECA and ORR activity measurements
 - A careful study of the ECA measurement and contribution/overlap of hydrogen tungstates to the HUPD region will be carried out
 - HPA modified catalysts will be evaluated for ECA and ORR activity.

Summary

Relevance: Pt/WO_X addresses the key issues of support durability and catalyst activity for PEMFC commercialization

Approach: Use of a durable support and HPA functionalization that may provide catalyst-support interaction and raise the activity

Technical Accomplishments: Growth of WO_X nanorods and other shapes using HWD and wet chemistry, ALD deposition of Pt on WO_X , HPA attachment to carbon, preliminary electrochemistry on these materials.

Collaborations: Close collaboration with CU Boulder on Pt-ALD, with CSM on HPA functionalization and consulting with 3M and NTCNA.

Technical Back-up Slides

Automotive Operations Imposed on Catalyst Support

Startup/Shutdown

- Unmitigated
 - Anode : H_2 -Air Front $\rightarrow 0 OCV (0.95 V)$
 - Cathode: Air \rightarrow 0.95 V 1.6 V Severe C corrosion
- Mitigated (Stack shorting)
 - Anode : H_2 -Air Front $\rightarrow 0 OCV (0.95 V)$
 - Cathode : 0 V OCV

Normal Operation

- OCV (0.95 V) Milder C corrosion
- Load Cycling (0.60- 0.95 V)

Effect of Upper Potential on loss of Electrochemical Surface Area

ECA & ORR Benchmarks for Baseline Pt/C Electrocatalysts

Rotating Disk Electrode Experiments

Table 1. NREL & DOE 2015 electrocatalyst Status & Targets.

*RDE half-cells - 900 mV, 20 mV/s, 25°C, 0.1 M HClO₄;

***MEAs* - 900 mV, 50 cm² subscale fuel cells, 15 min/point, 150 kPa ($PO_2 = 100$ kPa), 80°C, 100% RH, Nafion membrane.

DOE Status and Targets & NREL Status for Pt/C

	Specific Activity [µA/cm ² _{Pt}]	Mass Activity [mA/mg _{Pt}]
DOE 2015 Target in MEA**	720	>440
DOE 2005 Pt/C Status**	180	110
NREL Pt/C status in MEA**	290±10	225±10
NREL Pt/C status in RDE*	270 ± 30	270±30