2011 Hydrogen Program Annual Merit Review and Peer Evaluation Meeting Arlington, VA – May 9-13, 2011

Advanced Materials and Concepts for Portable Power Fuel Cells

Piotr Zelenay

Los Alamos National Laboratory Los Alamos, New Mexico 87545

Project ID: FC091

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date:
- End date: Four-year duration
- **Completion:**

Budget

- Total funding estimate:
 - DOE share:
 - Contractor share:
- FY10 funding received:
- FY11 funding estimate:

Barriers

A. Durability (catalyst; electrode)

.os Alamos

AL LABORATORY

- **B.** Cost (catalyst; membrane; MEA)
- C. Electrode Performance (fuel oxidation kinetics)

September 2010

ca. 15%

\$3,825K

\$342K

\$250K

\$1,000K

Partners – Principal Investigators

Brookhaven National Laboratory

BROOKHAVEN NATIONAL LABORATORY Radoslav Adzic

University of California, Riverside

UCRIVERSIDE – Yushan Yan

Virginia Tech Virginia

James McGrath

Johnson Matthey Fuel Cells

Tech

Johnson Matthey Fuel Cells – Nadia Permogorov

Smart Fuel Cell Energy

Oak Ridge National Laboratory

- Karren More

Objective: Develop advanced materials (catalysts, membranes, electrode structures membrane-electrode assemblies) and fuel cell operating concepts capable of fulfilling cost, performance, and durability requirements established by DOE for portable fuel cell systems; assure path to large-scale fabrication of successful materials

Table 3.4.7 Technical Targets: Consumer Electronics (sub-Watt to 50-Watt)								
Characteristic	Units	2005 Status ^{a, b}	2006	2010				
Specific power	W / kg	20	30	100				
Power density	W/L	20	30	100				
Energy density	Wh / L	300	500	1,000				
Cost	\$ / W	40 ^c	5	3				
Lifetime	hours	>500	1,000	5,000				

Project technical targets:

- System cost target: \$3/W
- **Performance target:** Overall fuel conversion efficiency (η_{Σ}) of 2.0-2.5 kWh/L For methanol fuel:

(1) 2.0-2.5 kWh/L $\rightarrow \eta_{\Sigma}$ = 0.42-0.52 (1.6-2.0× improvement over the state of the art, ~ 1.250 kWh/L)

(2) If $\eta_{\text{fuel}} = 0.96$, $\eta_{\text{BOP}} = 0.90$, $V_{\text{th}} = 1.21$ (at 25°C)

 $V_{cell} = V_{th} [\eta_{\Sigma} (\eta_{fuel} \eta_{BOP})^{-1}] = 0.6-0.7 V$

The ultimate project goal!

- DMFC anode research:
 - catalysts with improved activity and reduced cost (BNL, JMFC, LANL)
 - development of catalysts with improved durability (LANL, JMFC)
- Innovative electrode structures for better activity and durability (UCR)
- Hydrocarbon membranes for lower MEA cost and enhanced fuel cell performance (VT, LANL):
 - block copolymers
 - copolymers with cross-linkable end-groups
- Alternative fuels for portable fuel cells:
 - ethanol oxidation electrocatalysis (BNL, LANL)
 - dimethyl ether research (LANL)
- Characterization; performance and durability testing; multi-cell device:
 - advanced materials characterization (ORNL, BNL, LANL)
 - MEA performance testing (LANL, JMFC, SFC)
 - durability evaluation (LANL, JMFC, SFC)
 - five-cell stack (SFC)

Approach: Milestones

DATE	MILESTONE	STATUS	COMMENTS
Feb 11	Complete preliminary electrochemical characterization of methanol and DME oxidation on state-of-the-art anode catalysts (performance baseline determination).	Complete	Characterization completed on both carbon- supported and support-free PtRu catalysts from Johnson Matthey.
Mar 11	Complete evaluation of at least three PtRu catalysts of different composition for DME oxidation.	Complete	Fuel cell study of DME oxidation completed at six PtRu catalysts.
Apr 11	Conclude synthesis of trisulfonated hydrophilic (SQS) 6F copolymers.	Complete	6FPAEB-BPS100 copolymer synthesized; structure confirmed using ¹ H NMR.
Apr 11	Demonstrate a nanotube catalyst with MeOH oxidation activity within 0.05 V of the state-of-the-art PtRu catalysts.	Complete	Two PtRu nanotube catalysts demonstrated with the onset MeOH oxidation potential of ~ 0.33 V <i>vs.</i> RHE (the same as measured with HiSPEC 12100 reference catalyst)
Jun 11	Complete equipment set-up for stack evaluation; adapt stack hardware to testing hydrocarbon membranes of different thickness.	Pending	Delay possible due to late implementation of SFC subcontract.
Sep 11	Demonstrate a new MeOH oxidation catalyst that significantly exceeds half-cell mass activity of 200 mA/mg _{Pt} at 0.35 V at 80°C (<i>iR</i> -corrected).	Complete	Milestone exceeded; 550 mA/cm ² at 0.35 V measured at 80°C with JMFC's "advanced anode catalyst" for MeOH oxidation.
Sep 11	Demonstrate high-activity $Pt_{ML}/Pd_{alloy}/C$ electrocatalyst with Pt mass activity of 2.5 A/mg and specific activity of 1.2 mA/cm ² (both at 0.9 V)	Pending	On schedule.
Sep 11	Improve the ternary PtRhSnO ₂ electrocatalyst to oxidize EtOH to CO_2 with an efficiency of 50% at the anode potential of 0.4 V and 80°C.	Pending	On schedule.

MeOH Oxidation: Pt-Thrifted Anode Catalysts Performance

 <u>Highlight</u>: "Advanced MeOH oxidation catalyst" matching the performance of benchmark HiSPEC[®] 12100 catalyst at a much higher loading; mass activity of 550 mA/mg_{Pt} reached at 0.35 V (80°C)

> Mass activity milestone achieved and exceeded by 175%

 Anode research on track to reach final project goal of 150 mA/cm² at 0.60 V (DMFC) using lower precious metal content

MeOH Oxidation: Pt-Thrifted Catalyst Stability

Surface CO generation: 0.5 M MeOH, 0.125 V, 15 min, 80°C Stripping scan rate: 20 mV/s

- Background and CO-stripping CVs showing noticeable changes to catalyst properties during the first 200 cycles, little thereafter (a steady-state reached)
- Increase in Pt-character observed during the first 200 cycles, virtually no change thereafter
- 300 cycles resulting in 20-30 mV fuel cell performance loss at 0.50 V, attributable to the anode (based on the anode polarization)
- Benchmarking vs. HiSPEC[®] 12100 planned

Innovative Electrode Structures: PtRu Nanotube Catalysts for MeOH Oxidation

- 1. Displacement of Ag in AgNW with Pt to form PtNT;
- 2. Ru deposition from RuCl₃ (reduction with ethylene glycol in the presence of polyvinyl pyrrolidone for shape control);
- 3. Annealing to form PtRu alloy.

PtRu Nanotubes from Cu Template

- Simultaneous displacement of Cu in CuNW with Pt and Ru to form PtRuNT;
- 2. Annealing to form PtRu alloy.

- 1. Displacement of Ag in AgNW with Pt to form PtNT;
- 2. Electrochemical deposition of Ru from $RuCl_3$ in H_2SO_4 at 0.3 V for 2 minutes.

SEM images: (a) CuNW; (c) PtNT; (e) $Pt_{80}Ru_{20}$ (Cu); (g) $Pt_{50}Ru_{50}$ (Cu). TEM images: (b) CuNW; (d) PtNT; (f) $Pt_{80}Ru_{20}$ (Cu); (h) $Pt_{50}Ru_{50}$ (Cu).

Innovative Electrode Structures: PtRu Nanotube Catalyst Performance

Electrode preparation: Catalysts coated onto a 5 mm glassy-carbon electrode at a total metal (Pt, Ru) loading of 80 μ g cm⁻², followed by addition 10 μ L of a 0.05 wt % Nafion[®] solution to ensure catalyst adhesion. **Solution:** 1.0 M MeOH in 0.5 M H₂SO₄; **Scan rate:** 5 mV s⁻¹ **Reference electrode:** RHE **Cell:** 25°C

 <u>Highlight</u>: Excellent specific activity for MeOH oxidation demonstrated with several PtRuNT catalysts; onset potential already matching the one measured with a stateof-the-art commercial catalyst (HiSPEC[®] 12100)

MeOH activity milestone achieved with PtRu nanotube catalysts

 Mass activity of PtRu nanotube catalysts in need of improvement, for example, via thinning of the tube wall (presently *ca.* 11 nm)

Characteristics	HiSPEC [®] 5000	LANL PtRu Catalyst
Metal loading by TGA in air (wt%)	23	27
Pt:Ru mass ratio by XRF	63:37 (50:50 at%)	64:36 (51:49 at%)
ECSA by CO stripping (m²/g _{PtRu})	92	77
Onset potential ^a of MeOH oxidation (V vs. RHE)	0.34	0.34

^a Determined at a current equal to of 3× the standard deviation of background current

- Highlight: PtRu/C synthesized with the same onset potential for MeOH oxidation as that of the state-of-theart commercial catalyst and possibly with improved alloying
- <u>Next</u>: XRD verification of alloying; study of catalyst stability under DMFC operating conditions; impact on ruthenium crossover

Multiblock Copolymers for Reduced MeOH Crossover: Synthesis

- Partial fluorination of hydrophobic block to enhance proton conductivity via better phase separation and to improve adhesion (intactness) to Nafion[®] ionomer in electrodes
- Benzonitrile used to reduce MeOH permeability via complexation with H₂O molecules
- Highly-sulfonated hydrophilic block increasing proton conductivity
- ¹H NMR confirming the chemical structure of multiblock copolymer

Copolymer synthesis milestone achieved

Multiblock Copolymers for Reduced MeOH Crossover: Properties

Polymer	IV (dL/g) ^ь	IEC (meq/g) ^د	Water Uptake (wt%)	Conductivity ^d (mS/cm)
Nafion [®] 212	n/a	1.00	22	120
6FPAEB35 (random) ^a	0.62	1.50	32	80
6FPAEB-BPS 7k-7k ^a	0.61	1.55	42	137
6FPAEB-BPS 15k-15k ^a	1.01	1.55	46	147

^a Annealed at 220°C; ^b Measured by GPC with 0.05 M LiBr/NMP as mobile phase at 60°C; ^c From ¹H NMR; ^d Measured in liquid water at 30°C.

- Higher water uptake (undesirable) and proton conductivity (desirable) observed with multiblock than random copolymer
- Highlight: Proton conductivity increase much larger than rise in water uptake
- <u>Next</u>: Reduction in water uptake by e.g., lowering the annealing temperature and block length

 Highlight: Mechanical properties successfully improved by using multiblock-copolymer approach

- At 10% RH and 90% RH, higher toughness (integral of stress-strain curves) measured for all multiblock copolymers compared to random copolymer
- Lower annealing temperature giving better elongation, especially for the 15k-15k material; higher annealing temperature giving higher stress value

Multiblock Copolymers for Reduced MeOH Crossover: DMFC Performance

- Good adhesion (intactness) of multiblock-copolymer membranes and Nafion[®]bonded electrodes observed during MEA processing and DMFC testing
- Three times lower MeOH permeability of multiblock-copolymer membranes allowing for the use of thinner membranes in DMFC testing
- Highlight: Multiblock-copolymer membranes outperforming Nafion[®] 117 in DMFC testing, even at a relatively low MeOH concentration of 0.5 M MeOH; even larger improvement expected at higher MeOH concentrations

Virginia

Ethanol Oxidation: Ternary PtRhSnO₂ Catalyst

Ternary PtRhSnO₂ model catalyst capable of oxidizing EtOH to CO₂ (at 25°C):

- Pt abstraction and oxidation of H atoms
- SnO₂ source of OH for oxidation of strongly bound intermediates
- Rh small amounts placed either on SbO₂ or Pt to aid in C-C bond scission

Ethanol Oxidation: PtRhSnO₂ Catalyst Optimization

ABORATORY

- At low potentials, CO₂ generation dominant with the most active ethanol oxidation catalysts (PtRh_{1/2}SnO₂ and PtRh_{1/3}SnO₂)
- <u>Highlight</u>: Best PtRhSnO₂ catalysts showing unprecedented activity in ethanol oxidation

Ethanol Oxidation: PtRh_{1/2}SnO₂ Catalyst Characterization

(a), (b) – 1-2 nm PtRh particles on amorphous SnO₂ (Pt ensembles likely too small for optimal EtOH adsorption)
(c) - PtRh nanoparticles on crystalline SnO₂; PtRh(111) spacing 2.27 Å; SnO₂ spacing *ca*. 2.78 Å, corresponding to the (011) SnO₂ lattice planes
(d) - discrete 1-2 nm PtRh nanoparticles on amorphous SnO₂ used for EDS mapping (*on the right*)

EDS Elemental Mapping

Broad oxygen signal associated with Sn confirming formation of broad SnO₂ fragments

Pt-Rh map suggesting random alloying (in agreement with EXAFS)

Sn-Pt map indicating decoration of SnO₂ by PtRh nanoparticles

2011 Hydrogen Program Annual Merit Review

Ethanol Oxidation: Ptlr_xSnO₂ Catalysts

- Ir-based ternary catalysts exhibiting significant catalytic activity in EtOH oxidation to CH₃COOH
- Selectivity of Ir-based ternary catalysts for CO₂ formation much lower than that of the best PtRhSnO₂ catalysts

NATIONAL LABORATORY

Ethanol and Methanol Oxidation: Pt_{ML}/Au(111) Catalyst Study

- IRRAS data attesting to high CO_2 production at a $Pt_{ML}/Au(111)$ catalyst from MeOH (but not EtOH); low oxidation onset potentials values observed
- <u>Highlight</u>: Au showing promising characteristics as support for EtOH and MeOH; worth further investigation

2011 Hydrogen Program Annual Merit Review

NATIONAL LABORATORY

Direct Dimethyl Ether Fuel Cell (DDMEFC)

DME Advantage

- Higher energy density than MeOH (12 e⁻/molecule; 8.2 kWh/kg)
- No C-C bond to split
- Possibly lower crossover compared to MeOH (lower dipole moment)
- Storable as high density liquid at *ca.* 75 psig

Lower DDMEFC than DMFC performance

(but many paths for improvement exist)

pressure; only slight dependence on fuel

Next: Assess DDMEFC feasibility versus

DMFC after further optimization of the DME

flow rate observed (40-200 sccm)

anode (go/no-go decision in FY12)

measured with MEAs optimized for methanol

Baseline milestone achieved

DDMEFC performance strongly depending on

- Amenable to gaseous, pump-less feed (handling similar to propane and butane); existing infrastructure usable
- Low toxicity, comparable to liquid propane; not spreadable into groundwater; decomposable in atmosphere within tens of hours

Muller *et al., J. Electrochem. Soc.* **147**, 4058, 2000. Mench *et al., J. Electrochem. Soc.* **151**, A144, 2004.

$$CH_3 - O - CH_3 + 3H_2O \rightarrow 2CO_2 + 12H^+ + 12e^-$$

 $3O_2 + 12H^+ + 12e^- \rightarrow 6H_2O$

 $CH_3{-}O{-}CH_3+3O_2\rightarrow 2CO_2+3H_2O$

Anode: 6 mg cm⁻² $Pt_{50}Ru_{50}$ black, 1.8 mL/min MeOH solution or 40 mL/min DME gas; **Cathode:** 4 mg cm⁻² Pt black, 30 psig (with DME) or 0 psig (with MeOH), 500 sccm air; **Membrane:** Nafion[®] 117; **Cell:** 80°C

DME Fuel Cell: Anode Catalysts with Different Pt-to-Ru Ratios

Highlight: Wide range of Pt-to-Ru ratios screened for DME anode performance for the first time

Milestone achieved with a higher number of PtRu catalysts (six instead of three)

- Highlight: Pt₅₀Ru₅₀ exhibiting overall best performance in high and middle voltage ranges; Pt-rich catalysts performing better at low voltages (near peak power); behavior more complex than that of DMFC anode catalysts (technical backup slide)
- <u>Next</u>: Effect of anode catalyst composition on Ru crossover and cathode performance (relevant to both DDMEFC and DMFC); half-cell DME studies with PtRu catalysts (far fewer prior reports on DME catalysis exist compared to MeOH catalysis)

DME Fuel Cell: PtRu Anode Activity and Fuel Crossover

Anode: 6 mg cm⁻² $Pt_{50}Ru_{50}$ black, 40 sccm DME, 30 psig <u>or</u> 6 mg cm⁻² $Pt_{50}Ru_{50}$ black, 0.5 M MeOH, 1.8 mL min⁻¹; **Cathode:** 4 mg cm⁻² Pt black, 20 psig, 200 sccm H_2 ; **Membrane:** Nafion[®] 117; **Cell:** 80°C

• PtRu anode deactivation occurring at high potentials, likely due to the surface oxide formation

- Highlight: Anode deactivation more pronounced at high Ru content (likely more oxophilic and thus less active surface)
- Highlight: DME oxidation current at the cathode is much lower than that of MeOH, especially at higher potentials
- <u>Next</u>: Half-cell study to verify the impact of surface oxide(s) on DME oxidation on PtRu catalysts

DME Fuel Cell: Performance Relative to Previous Work

Anode: 6 mg cm⁻² $Pt_{80}Ru_{20}$ black, 40 sccm DME gas, 30 psig; **Cathode:** 4 mg cm⁻² Pt black, 20 psig, 500 sccm air; **Membrane:** Nafion[®] 117; **Cell:** 80°C

Anode: 5 mg cm⁻² PtRu black, DME-saturated aqueous solution, 1.2 mL min⁻¹; **Cathode:** 5 mg cm⁻² Pt black, 300 sccm air; **Membrane:** Nafion[®] 117; **Cell:** 80°C

Highlight: In spite of using gaseous DME feed, the performance of LANL DDMEFC at 80°C exceeding the best previous published result

- Seven organizations with highly complementary skills and capabilities in catalyst development, electrode-structure design, materials characterization, MEA fabrication, and portable fuel cell development and commercialization:
 - Los Alamos National Laboratory and Brookhaven National Laboratory direct DOE-EERE contracts
 - University of California-Riverside and Virginia Tech subcontracts to Los Alamos National Laboratory
 - Johnson Matthey Fuel Cells and SFC Energy subcontracts to Brookhaven National Laboratory
 - ✓ Oak Ridge National Laboratory *no cost partner*
- Collaborations outside Fuel Cell Technologies Program:
 - University of Iceland, Reykjavik, Iceland and The School of Renewable Energy Science, Akureyri, Iceland – ruthenium crossover research project completed at LANL in January 2011 by Anna Trendewicz, an exchange graduate student from Iceland
 - University of Waterloo, Waterloo, Ontario, Canada initial phase of collaboration in the development of nanostructured methanol oxidation catalysts
 - Ballard Power Systems, Burnaby, British Columbia, Canada preliminary collaborative discussions; two common presentations on catalyst crossover in fuel cell systems

Methanol oxidation catalysis:

- Perform comprehensive activity and stability study of advanced MeOH oxidation catalysts versus HiSPEC[®]12100 as a benchmark
- Complete evaluation of PtSnX catalysts for upcoming go/go-no decision on PtSn catalysts in FY12
- Evaluate the degree of Ru crossover resulting from advanced MeOH oxidation catalysts Innovative membranes and electrode structures:
- Determine durability of multiblock copolymers in an operating fuel cell; reduce polymer water uptake
- Improve dimension control and eliminate oxidation of CuNW (before galvanic displacement)
- Significantly reduce wall thickness of PtRu nanotubes to at least double the catalyst surface area Ethanol oxidation catalysis:
- Increase the size of PtRh nanoparticles to enhance the size of Pt ensembles in PtRhSnO₂ catalyst and to facilitate adsorption an dehydrogenation of the EtOH molecule
- Scale up the synthesis of a selected ternary catalyst to 2 g per batch for MEA testing
- Evaluate Au clusters and/or supported Au-monolayers as catalyst supports
- Complete DEMS instrument set-up

DME research:

- Determine the effect of anode catalyst composition on Ru crossover and cathode performance (relevant to both DDMEFC and DMFC)
- Complete half-cell DME studies with PtRu catalysts
- Assess DDMEFC feasibility versus DMFC following full optimization of the DME anode (go/no-go decision on DME research in FY12)

Summary

- Thrifted PtRu catalyst of MeOH oxidation meets and significantly exceeds 2011 mass activity target (200 mA/mg_{Pt})
- PtRu nanotube catalysts exhibit promising methanol oxidation activity; however, mass activity needs to be increased by, for example, thinning tube walls
- Multiblock 6FPAEB-BPS100 copolymers with improved mechanical properties and high proton conductivity show lower MeOH permeability and better DMFC performance compared to Nafion[®]
- Ternary PtRhSnO₂ electrocatalysts exhibit unprecedented activity for ethanol oxidation and produce large amounts of CO₂
- Ternary catalysts with a Rh-to-Pt ratio between 1:3 and 1:2 have the highest activity in EtOH oxidation; an increase in the catalyst particle size may be required for efficient EtOH adsorption and dehydrogenation
- Au represents potentially promising support for EtOH and MeOH oxidation catalysts
- Unlike in MeOH oxidation, the optimal PtRu catalyst composition varies depending on the operating voltage of the DME fuel cell (anode potential)
- DME crossover is less than that of MeOH under typical testing conditions
- A LANL DDMEFC operating with a Pt₅₀Ru₅₀ anode catalyst has shown the highest performance reported to date at 80°C
- All project milestones have been achieved or are on track to completion

Co-Authors

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

ethanol and methanol anode catalyst research

R. R. Adzic (PI), M. Li, K. Sasaki, M. Vukmirovic

- anode catalyst and membrane research; characterization

<u>P. Zelenay</u> (Project Lead), H. Chung, Z. Ding, C. Johnston, Y. S. Kim, Q. Li, A. Trendewicz, P. Turner, G. Wu

- nanostructure catalyst structures

Y. Yan (PI), S. Alia

hydrocarbon membrane research

J. McGrath (PI), Y. Chen, C. H. Lee, M. Lee

methanol anode catalyst research; MEA integration

N. Permogorov (PI), G. Hards, G. Spikes

MEA integration and testing; final deliverable

V. Graf (PI), C. Böhm, J. Stephens

- microscopic characterization (no-cost partner)

K. More (PI), D. Cullen

Technical Back-Up Slides

MeOH Oxidation: PtSn Catalysts

- At 0.5 M MeOH, PtSn catalyst performing very poorly; anode performance improved at higher MeOH concentrations (2.0 and 2.47 M)
- Different rate limiting step of MeOH oxidation on PtSn catalysts than PtRu catalysts
- High fuel crossover responsible for poor DMFC performance at high MeOH concentrations
- Even before durability testing PtSn catalysts offering little promise for DMFC anode application

2011 Hydrogen Program Annual Merit Review

Increased phase separation of multiblock copolymers apparent from sharp peaks

2011 Hydrogen Program Annual Merit Review

Fit Pt L3 and Rh K data concurrently with no constraints

PtRh solid-solution-alloy nanoparticles with a diameter of *ca.* 1-2 nm

