Highly Efficient, 5kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications

Project ID: H2RA003 Don Rohr May 13, 2011

This presentation does not contain any proprietary, confidential or otherwise restricted information.

OVERVIEW

Timeline

- Project start September 2009
- Project end September 2012
- 70% complete

Budget

- Total project funding \$6.7M
 - DOE \$3.37M
 - Plug Power \$3.37M
- Funding in FY10 \$0
- Funding in FY11 \$0

Barriers

- Barriers addressed:
 - A. Durability
 - B. Cost
 - C. Performance

Partners

- Interactions/collaborations
 - University of California Irvine
 - Sempra Energy
- Project Leads
 - Dr. Jack Brouwer
 - Randy Brown

OBJECTIVES - RELEVANCE

The objective of this demonstration program is to substantiate the durability and economic value of *GenSys Blue* and verify its technology and commercial readiness for the marketplace.

Characteristic	Units	Goal	1st GO - 2Q10	2nd GO - 2Q11
Electrical efficiency at rated power	%	40	>30	>30
CHP efficiency at rated power	%	90	>80	>80
Cost (qnty < 15)	\$/kWe	10,000	20,000	20,000
Durability at < 10% rated power degradation	hr	10,000	2,000	8,700
Noise	dB(A)	<55 at 10m	<55 at 10m	<55 at 10m
Emissions (combined NOx, CO, SOx, hydrocarbon, particulates)	g/MWhr	< 1.5	< 1.5	< 1.5

PRAHEA

CO2 Emissions Comparison

Midsized Passenger

OBJECTIVES - RELEVANCE

					Small PHEV	to	Mid PHEV	La
Characteristic	Units	Goal	1st G0 - 2	Q10	2nd GO - 20)11	Tech	nology
Electrical efficiency at rated power	%	40	>30		>30			
CHP efficiency at rated power	%	90	>80		>80			
Cost (qnty < 15)	\$/kWe	10,000	20,000		20,000			
Durability at < 10% rated power degradation	hr	10,000	2,000		8,700			
Noise	dB(A)	<55 at 10m	<55 at 10	lm	<55 at 10n	n		
Emissions (combined NOx, CO, SOx, hydrocarbon, particulates)	g/MWhr	< 1.5	< 1.5		< 1.5			

RAHEA

D

Large Passenger to Large PHEV **Residential CHP Fuel**

Cell

In 2Q10 the team held its first GO/NO decision.

8

7

Savings

Small Passenger to

pewer

MILESTONES - APPROACH

	20	09		2010			2011		100		2012	
	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3
Task 1 Internal Durability/ Reliability Fleet Testing 1.1 System Design 1.2 System Modeling 1.3 Site Identification & Selection 1.4 Procure Parts & Build Systems 1.5 Long-Term Tests		Mileston	6 Un	its Go/N	(22)	ilestone	2			Milestone 3		ne 3
Task 2 External Customer Demonstration Testing 2.1 Communication, Education, Outreach 2.2 Site Preparation/ Grid Interconnections 2.3 Build and Installation 2.4 Demonstration Testing/ Maintenance 2.5 Decommissioning) 6 Unit:	1			• Go/No	Go		-
Program Management	-								-			

VERAHEAD

CHP FUEL CELL DURABILITY DEMONSTRATION - TASKS

- Task 1: Internal Durability/ Reliability Fleet Testing
 - Task 1.1: System Design
 - Task 1.2: System Modeling
 - Task 1.3: Site Identification and Selection
 - Task 1.4: Procure Parts and Build Systems
 - Task 1.5: Long Term Tests
 - 1st GO/NO GO Decision
 - Task 2: External Customer Demonstration and Testing
 - Task 2.1: Communication, Education and Outreach
 - Task 2.2: Site Preparation, Natural Gas and Grid Interconnection

RAHEA

- Task 2.3: Build and Installation
- Task 2.4: Demonstration Testing and Maintenance
 2nd GO/NO GO Decision
- Task 2.5: Decommissioning
- Task 3: Project Management
 - Task 3.1: Cost Analysis

TASK 1.1: SYSTEM DESIGN - COMPLETE

Product Characteristics	
Minimum Continuous Output	0.5 kW
Maximum Continuous Output	2.5 kW to 5.0 kW
Operating Fuel	Natural Gas
Dimensions	101cm x 71cm x 122cm
Weight	250kG
Nominal Voltage	120Vac 60Hz or 230Vac 50Hz
Efficiency (Electric/CHP)	30% / 85% LHV
Integrated Burner	Variable Output (7kW / 25kW)
Operating Conditions	
Location	Indoors
Ambient Temperature Range	0°C - 40°C

Plug Power design initiatives:

Controls and efficiency improvements

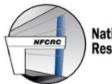
- Start-up, thermal response and heat modulation improvements, improved thermal recovery
 From 89% peak total efficiency to 94%
 Manufacturability improvements

 Enclosure, piping, insulation and wiring
 Reduced build time from > 120 hours to < 50

 Design for certification

 Integrated with commercial automatic burner control system
 Reduced exhaust temperature
 - From ~\$90k to \$53k in volumes < 20

The low cost, reliable, simple to install design with a compelling value proposition yields an energy efficient green product that delivers value to the customer.



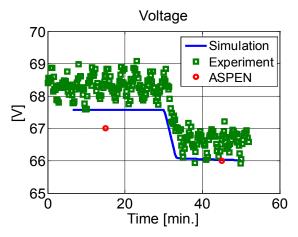
TASK 1.2: SYSTEM MODELING

- **Objective:** Using Matlab-Simulink, develop a dynamic model and simulation of the *GenSys Blue* fuel cell system, correlate with data from the reliability fleet and use the model to further understand and improve the design.
- **Approach:** Develop independent models of the stack, fuel processor and burner then integrate these into a system model; demonstrating initially steady-state capability and then dynamic.
- **Status:** Sub-system models, system integration and steady-state capability complete. Dynamic development ongoing.

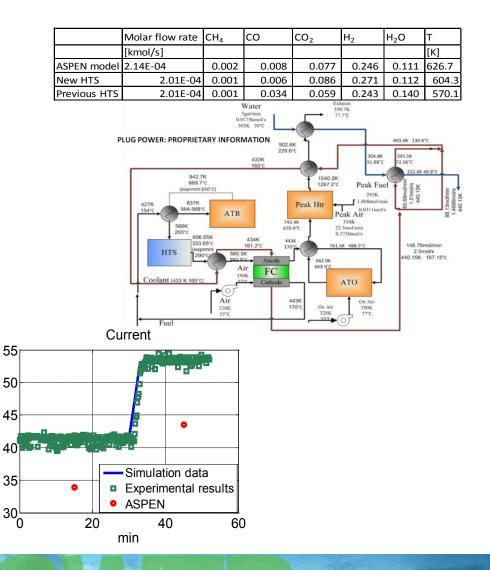
UCI is leading the system modeling effort. The team is correlating data generated by the model with data from the reliability fleet.

National Fuel Cell Research Center

FRAHEAD


TASK 1.2: SYSTEM MODELING

Completed Work


- Fuel Processor Model Modifications
- System Integration
 - Dynamic capability
 - Ability to adjust parameters to match various data

Ongoing work

- Continued fine tuning of parameters
 such that UCI models agree with Plug Power models
- Verify dynamic UCI model with experiments at UCI

∢

TASK 1.3: SITE IDENTIFICATION AND SELECTION

Sempra Energy IPA

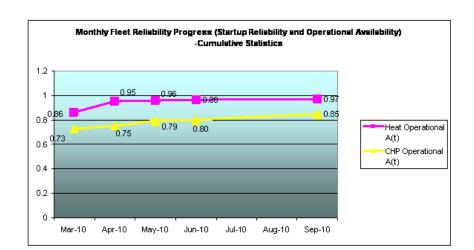
(ERAHEAD

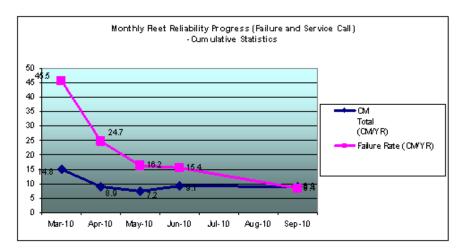

Sempra Energy in California is assisting the team with site selection in their territory for external reliability testing:

- NFCRC labs in Irvine, CA (3 systems)
- Sempra Energy sites (3 systems)

- Ongoing installation work
 - Exterior Plumbing/Electrical
 - Interior exhaust duct
 - Battery installation
 - CHP rig installation
 - Estimated Completion Date: Mid April

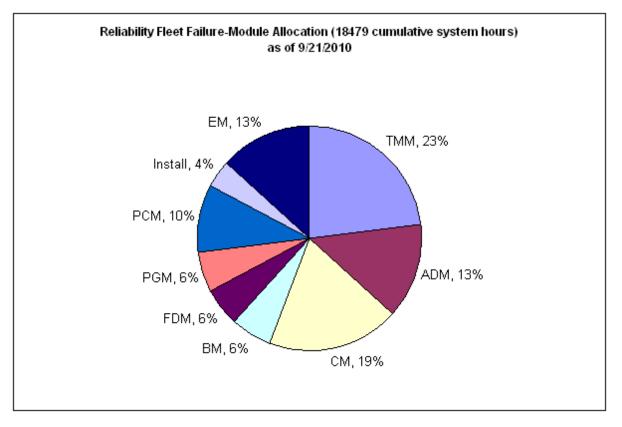
VERAHEAD




TASK 1.5: LONG TERM TESTING

Internal fleet dashboard metrics:

- 6 systems commissioned in Plug Power labs
- Over 18,000 run hours
- 32 MWhrs of electricity and 163 MWhrs of heat produced
- Unadjusted heat availability of 97%
- Unadjusted CHP availability of 85%
- CHP availability (supplier delivery issues removed) of 94%

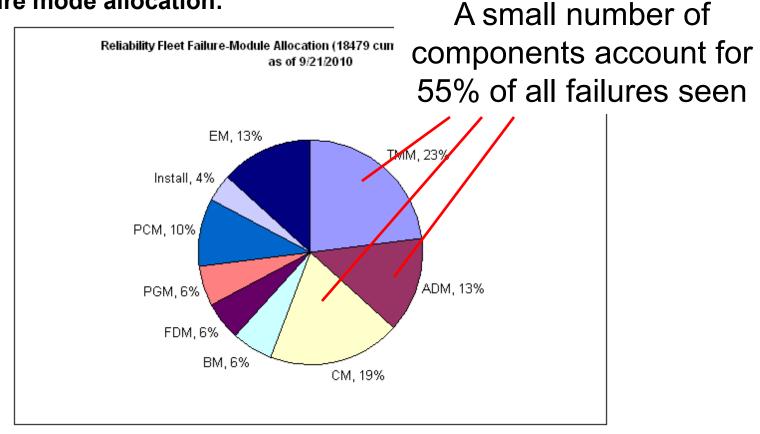


FRAHE

RAHEAD

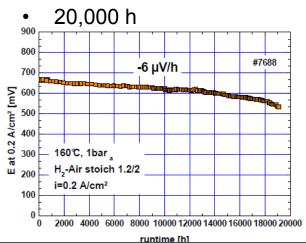
TASK 1.5: LONG TERM TESTING

Fleet failure mode allocation:

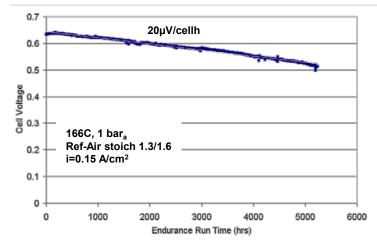


TASK 1.5: LONG TERM TESTING

Fleet failure mode allocation:



TASK 1.5: LONG TERM TESTING


- Current stack life in system is:
 - <u>3000-5000 h (6-12 months)</u>

fore April 20	10	After April 2010	
Hrs		Hrs	
1045		4073	
580		3801	
1778			
2068		4742	
1913		3098	
#N/A		3206	
1476.8		3784	
	Hrs 1045 580 1778 2068 1913 #N/A	1045 580 1778 2068 1913 #N/A	Hrs Hrs 1045 4073 580 3801 1778 2068 2068 4742 1913 3098 #N/A 3206

• BASF Laboratory Data:

- Current stack life on test station is:
 - >5400h (12+ months) and running
 - Projected 10,000h (18-24 months) at current rate

HT Technology Exceeds Requirements and HT Stack Lifetimes are Approaching Commercial Launch Requirements

٠

FRAHEAD

1st GO/NO GO DECISION

Characteristic	Units	Goal	1st GO - 2Q10	1st GO Actual	2nd GO - 2Q11	
Electrical efficiency at	%	40	>30	32%	>30	
rated power	,0	40	~00	52.70	~30	
CHP efficiency at rated	%	90	>80	90%	>80	
power	,0		,00	50,0	200	
Cost (qnty < 15)	\$/kWe	10,000	20,000	10,400	20,000	
Durability at < 10% rated	hr	10,000	2,000	3,000	8,700	
power degradation	111	10,000	2,000	0,000	0,000	
Noise	dB(A)	<55 at 10m	<55 at 10m	55 at 1m	<55 at 10m	
Emissions (combined						
NOX, CO, SOX,	g/MWhr	< 1.5	< 1.5	< 1.5	< 1.5	
hydrocarbon, particulates)						

Based on data from the internal fleet the team believes the systems are ready for external deployment and made the decision to GO.

2.1: COMMUNICATION, EDUCATION AND OUTREACH

Events to date:

- Ribbon cutting ceremony for *GenSys Blue* installation at Union College in NY
- Alumni Day at Union College
- New York State Science, Technology, Engineering and Mathematics (STEM) Educational Collaborative at Ballston Spa High School in Ballston Spa, NY
- United States Fuel Cell Seminar in Palm Springs, California. *GenSys Blue: Fuel Cell Heating Appliance*
- Ballston Spa High School technology field trip
- Plans for system on display at the Schenectady Museum
- UCI takes over in California
- Co-taught Fuel Cell Seminar Course with UCI

NYS Assemblyman Jim Tedisco with Union College faculty, Plug Power and National Grid employees at ribbon cutting ceremony (DOE 7C)

FRAHEA

2.2: SITE PREPARATION, NATURAL GAS AND GRID INTERCONNECTION

Site	Site Survey	NEPA Form	Application Engineering	Permits	Interconnect Application	Installation	Interconnect Approval	Commissioning
University of Cali				1011				
Installation 1	13-Sep	n/a	1Q11	1Q11	n/a	2Q11	n/a	2Q11
Installation 2	13-Sep	n/a	1Q11	1Q11	n/a	2Q11	n/a	2Q11
Installation 3	13-Sep	n/a	1Q11	1Q11	n/a	2Q11	n/a	2Q11
Sempra Energy S	ites, Califo	ornia						
Woodbury								
Lagoon	14-Sep	n/a	2Q11	3Q11	2Q11	3Q11	3Q11	4Q11
Anthony								
Residence	14-Sep	n/a	2Q11	3Q11	2Q11	3Q11	3Q11	4Q11
Hentschel								
Residence	15-Sep	n/a	2Q11	3Q11	2Q11	3Q11	3Q11	4Q11
Huie Residence	14-Feb	n/a	2Q11	2Q11	2Q11	3Q11	3Q11	4Q11

Sites are identified and the team has begun detailed site work.

RAHEAD

2.3: BUILD AND INSTALLATION

Three GenSys Blues sited at UC Irvine awaiting install Woodbury Pool CHP injection loop proposed tie-in point

VERAHEAD

COLLABORATIONS

• University of California Irvine – National Fuel Cell Research Center

-University, cost sharing partner within the program

-NFCRC develops a system model for product development, refining controls and improving operation

Sempra Energy

-Industry, non-cost sharing partner within the program

-Sempra Energy is providing sites for testing and will assist in interconnection and fleet evaluation

• LPA

-Industry, non-cost sharing partner outside of the program

-LPA will act as a site host and will assist in site design for the three systems installed on their campus

California Air Quality Management District (AQMD)

-State agency, non-cost sharing partner outside of the program

-AQMD will evaluate fleet data against California air quality standards

National Renewable Energy Laboratory (NREL)

-National lab, non-cost sharing partner outside of the program

-NREL will assist in fleet data analysis

FUTURE WORK

•	Installations at UCI California	2Q11
•	Installations in Sempra territory	3Q11
•	Begin External Reliability Fleet Testing	3Q11
•	Complete System Model	2Q11
	–UCI will verify system model against reliability fleet results	

- 2nd GO/NO GO Decision
 - -Based on achievement of the program objectives the team will decide whether or not to invest in upgrading the fleet and continuing long term testing
- Perform Economic Analysis
 - Using fleet performance data, Plug Power will publish an economic analysis of the viability of this CHP technology
- Complete Long Term Testing

4Q11

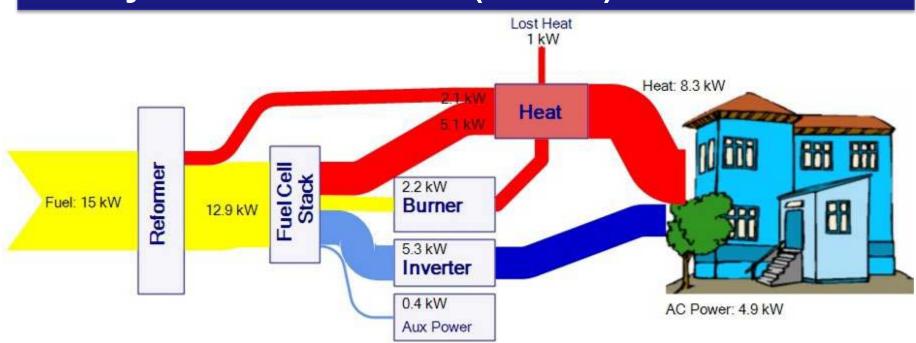
3Q11

3Q12

VERAHEAD

HEADQUARTERS

968 Albany-Shaker Road Latham, New York 12110 Phone: (518) 782-7700 Fax: (518) 782-9060


www.plugpower.com

FRAHEAD

Technical Backup Slides

GenSys Blue: microCHP (<15kW)

Increase household efficiency from ~45% to 85%

30%+ reduction in ultimate fuel usage and carbon footprint:

3 - 7 tons/year (Equivalent to NOT driving for 6 months)

Secure distributed generation with assured power

