

U.S. DEPARTMENT OF

Hydrogen Production Sub-program - Session Introduction -

Eric L. Miller

2011 Annual Merit Review and Peer Evaluation Meeting May 11, 2011

Goal & Objectives

Develop distributed and centralized technologies to produce H₂ from clean, domestic resources for a competitive cost, of 2–4/gge (dispensed)

<u>Near-term: Distributed Production (up to 1,500 kg/day H₂)</u> (produced at station to enable low-cost delivery)

- •Natural gas reforming
- •Renewable liquid reforming
- •Electrolysis

Longer-term: Centralized Production (up to 100,000 kg/day H₂) (large investment in delivery infrastructure needed)

- •Biomass gasification
- •Coal with sequestration
- •Wind-and solar-driven electrolysis
- •Solar high-temperature thermo-chemical water splitting
- •Photoelectrochemical and biological production

In the United States, about 9 million tons of hydrogen are produced annually for industrial purposes, and there are >1,200 miles of hydrogen pipelines.

Production Strategies

Informed prioritization of R&D needs in H₂ production pathways

- Targets and projected costs for H₂ Production portfolio pathways informed by independent analysis
- R&D needs for meeting targets in Production pathways are continually assessed and prioritized, as reflected in H₂ Production Roadmap

Pathway	Report
Steam Methane Reforming	Distributed Hydrogen Production from Natural Gas, NREL, October, 2006
Electrolysis - Distributed - Central (Wind)	<i>Current (2009) State -of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis, NREL, September, 2009.</i>
Photoelectrochemical	Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production, Directed Technologies Inc., December, 2009.
Biological	Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production, Directed Technologies Inc., September, 2009.
Biomass Gasification	Hydrogen Production Cost Estimate Using Biomass Gasification, Independent Panel Review, NREL, Draft, April, 2011
Solar Thermochemical	Cost Analyses on Solar-Driven High Temperature Thermochemical Water-Splitting Cycles, TIAX, February, 2011

Challenges

Materials performance & capital costs identified as key challenges in ALL distributed and central pathways in H₂ Production Roadmap

Distribu Gas R	ted Natural Reforming	Bio Liquids	-Derived Reforming	Coal and Biomass g Gasification		Materials durability and efficiency improvements	
 Critical C. High capita High opera maintenant Design for 	thallenges al costs ation and ce costs manufacturing	 Critical C High capi High oper maintenal Design fo Feedstock 	ChallengesCritical Challengestal costs• High reactor costsration and nce costs• System efficiencyr manufacturing k quantity and quality• Carbon capture and storage		and overall system capital costs reductions are needed in all pathways		
	Thermoche	hermochemical Water Ele		ctrolysis	Phot electroch	o- emical	Biological
 Critical Challenges Cost-effective reactor Effective and durable materials of construction Longer-term technology 		 Critical Challenges Low system efficiency and high capital costs Integration with renewable energy sources Design for manufacturing 		 Critical Challenges Effective photocatalyst material Low system efficiency Cost-effective reactor Longer-term technology 		 Critical Challenges Efficient microorganisms for sustainable production Optimal microorganism functionality in a single organism Reactor materials Longer-term technology 	

Budget

Production remains a high priority in the FY 2012 Request

FY 2012 Request = \$17.5M

FY 2010 Appropriation = \$15M

Hydrogen Production & Delivery

FY11 appropriation to be determined

*Includes coal-biomass-to-liquids R&D

Nuclear Hydrogen Initiative was discontinued at end of FY 2009 as a separate program. Development of high temperature electrolysis is continuing under the NGNP project, which is also looking at other end-use applications and energy transport systems

Emphasis:

- Update H2A P&D Pathway cost projections and update 2015 and 2020 targets
- Develop distributed production and forecourt technologies for early markets: Reduce capital costs of distributed production by 10% from 2010 baseline
- Continue to address key efficiency and materials needs for all Renewable pathways: Membranes, Catalysts, Semiconductors, Reactors, etc.
- Complete engineering-scale
 development of near term pathways

Progress: Separations

Critical component optimizations demonstrated

Near term technology compatible with commercialized central and distributed systems

Pd Thin Film Ceramic Membrane WGS Reactor

(Media and Process)

- <\$100/ft² Pd membrane tube bundles
- 1000 PSI operations
- 87% H₂ recovery
- >99.99% H₂ permeate quality

Pd-alloy Membrane for Multitube Modules (Pall

Corporation)

- achieved 270 SCFH/ft² flux in pure H₂/N₂
- <\$1000/ft², 400 PSI operations
- 88% H₂ recovery
- 99.99% H₂ permeate quality

Achieved full-scale ceramic membrane bundle: low cost potting technique used to coat outside of Pd membrane tubes

Demonstrated 12tube module with 12" elements: \sim 5 kW equiv. H₂ production

Porformance Criteria	DOE Target			
Performance Criteria	2010	2015		
Pure Flux: SCFH/ft ² @20 psi Δ P H ₂ partial pressure	250	300		
Membrane Cost \$/ft² (total module costs)	\$1,000	<\$500		
$\Delta \mathbf{P}$ Operating Capability	400	400 - 600		
H ₂ Recovery	>80%	>90%		
H ₂ Permeate Quality	99.99%	>99.99%		
Stability/Durability	2 years	>5 years		

Performance targets being met: major focus in FY 11-12 on long term component testing

Progress: Electrolysis

Demonstrated capital cost reduction and systems integration

Technology compatible with renewable central and distributed: commercialized components

3M nanostructured thin film electrode

New catalyst application techniques with 55% reduction on anode and >90% reduction on cathode

Projected cost reductions through electricity feedstock, capital costs, and durability*

- 15% electrolyzer capital cost reduction demonstrated through cell component optimizations (Proton, Giner)
- 370 hours operation of multiple commercial electrolyzer stacks in integrated systems study (NREL)

* Source: Hydrogen Pathways: Cost, Well-to-Wheels Energy use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery and Distribution Scenarios, NREL, September 2009 (from sensitivity analysis for distributed electrolysis) DSM MEAs fabricated with chemically etch supports for a 90% cost reduction

Chenelard Powell Jahnes CEES

13 kg/day PEM electrolyzer running in integrated renewable systems with 24/7 stack monitoring

Progress: Photoelectrochemical

U.S. DEPARTMENT OF

Record efficiencies observed in different materials classes

Promising technology for long-term central renewable production: component R&D needed

Projected cost reductions affected by material efficiency, durability & cost*

- Set new solar-to-hydrogen (STH) efficiency benchmarks in crystalline material systems (NREL), and in thinfilm materials systems (MVSystems -UH)
- Developed models of III-V / water interface to facilitate corrosion mitigation progress (LLNL / UNLV)

* Source: *Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production*. DTI , 2009 (from sensitivity analysis for Type 4 PEC reactor)

Initiated III-V surface validation study to improve corrosion resistance and enhance lifetime

16%-18% STH observed in crystalline III-V deviceover limited lifetime due to corrosion

New 4.3% STH benchmark demonstrated in more durable low-cost thinfilm CGSe device

Summary

Major milestones & future solicitations

- Completed 370 hours of testing multiple commercial electrolysis stacks after completing installation into NREL's wind-to-hydrogen system
- Completed modeling and analysis of prototype electrolyzer cell stacks and prioritize approaches to reduce cell stack cost by 15%.
- Completed draft of independent review of costs for H₂ from Biomass Gasification.
- Completed report on cost analyses on Solar-Driven High Temperature Thermochemical Water-Splitting Cycles (TIAX, Feb 2011)
- Publication of updated H2A version 3 in progress
- Update of Production cost targets and Multi-Year Plan in progress

Collaboration

Cross-office collaborative successes in H₂ production

Fundamental and applied research at Stanford/NREL to develop quantum-confined photocatalyst nano-particles and meso-structured support scaffold

Integration of novel Sun Catalytix catalysts with MWOE multi-junction silicon cells to split water using sunlight

Welcome Offices of Science and Fossil Energy!

Integrated AMR sessions in Production technologies

Crystal Gateway Marriott Hotel

•Wednesday oral session combines EE & SC Biological and other talks

- Combined EE & SC poster session Wednesday evening
- Thursday oral session combines EE & SC PEC and other talks
- •Friday oral session highlights FE presentations

- This is a review, not a conference.
- Presentations will begin precisely at the scheduled times.
- Talks will be 20 minutes and Q&A 10 minutes.
- Reviewers have priority for questions over the general audience.
- Reviewers should be seated in front of the room for convenient access by the microphone attendants during the Q&A.
- Please mute all cell phones, BlackBerries, etc.
- Photography and audio and video recording are not permitted.

- Deadline for final review form submittal is May 20th at 5:00 pm.
- ORISE personnel are available on-site for assistance. A reviewer ready room is set-up in *The Rosslyn Room* (on the lobby level) and will be open Tuesday–Thursday from 7:30 am to 6:00 pm and Friday 7:30 am to 2:00 pm.
- Reviewers are invited to a brief feedback session – at 3:45 pm on Thursday, in this room.

For More Information

Hydrogen Production Team

Sara Dillich (EE) (202) 586-7925 sara.dillich@ee.doe.gov

Roxanne Garland (EE) (202) 586-7260 roxanne.garland@ee.doe.gov

Eric Miller (EE - IPA from U. of HI) (202) 287-5829 eric.miller@ee.doe.gov

Amy Manheim (202) 586-1507 <u>amy.manheim@ee.doe.gov</u>

Guido B. Dehoratiis (202) 586-2795 guido.b.dehoratiis@hq.doe.gov

Golden Field Office:

David Peterson, GO

Paul Bakke, GO

Katie Randolph, GO

Support:

Jamie Holladay (PNNL) Kristine Babick (Energetics, Inc.)

EERE Postdoc Fellowship Program

- Fuel Cell Technologies Program Opportunities Available
 - Conduct applied research at universities, national laboratories, and other research facilities
 - Up to five positions are available the areas of hydrogen production, hydrogen delivery, hydrogen storage, and fuel cells
 - Applications are due June 30, 2011
 - Winners will be announced mid-August
 - Fellowships will begin in mid-November 2011

Postdoctoral fellowships in hydrogen and fuel cell research ►

http://www1.eere.energy.gov/education/postdoctoral_fellowships/

Key Participants – Hydrogen Production

Analysis & Testing

- ORNL
- TIAX
- PNNL
- UH
- SNL
- ANL

Bio-derived Liquids

- ANL
- PNNL
- NREL

Electrolysis

- Giner Electrochemical
- Avalence
- Proton Energy
- ORNL
- NREL

Membranes

- Media and Process Technology
- ASU
- Pall Corporation
- ORNL

Biomass Gasification

- UTRC
- GTI
- NETL

Solar High Temperature Thermochemical H₂ Production

- SNL
- ANL
- SAIC
- U of CO, Boulder

Photoelectrochemical H₂ Production

- LANL
- LLNL
- Midwest Optoelectronics
- MV Systems
- Stanford University
- NREL

Biological H₂ Production

- UC Berkeley
- J. Craig Venter
- NREL