Composite Pd and Alloy Porous Stainless Steel Membranes for Hydrogen Production and Process Intensification

Yi Hua MA Center for Inorganic Membrane Studies (CIMS) Worcester Polytechnic Institute Department of Chemical Engineering May 9-13, 2011

Project ID: PD007

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- → Start : 5/7/2007
- → Finish : 5/6/2011
- ➔ 100% Complete

Budget

- ➔ Total Project Cost: \$ 2,228,851
 DOE Share: \$ 1,756,444
 - DOE Share: \$1,756,444
 - Recipient Share: \$472,407
- ➔ Funding Received:

FY08:	\$ 442,785
FY09:	\$ 420,638
FY10:	\$ 392,803
FY11:	\$ 500,218

- → DOE Award #: DE-FC26-07NT43058
- ➔ DOE Project Manager:

Dr. Daniel Driscoll Subcontractor

→ Adsorption Research Inc. (ARI)

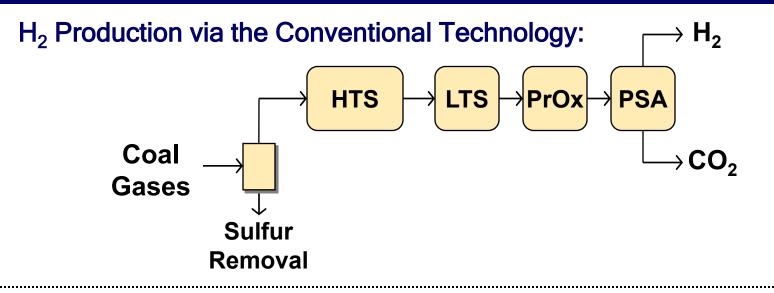
Barriers

- ➔ Barriers Addressed:
- > Re-producibility of high H_2 flux targets
- Setting of Pd thickness and support characteristics to meet 2015 DOE targets
- Determination optimum temperature WGSR
- 2D model for CMR simulations, safety and economical analysis
- Absorbent selection & PSA system build-up, testing completed with syngas+H₂O, H₂S and COS.

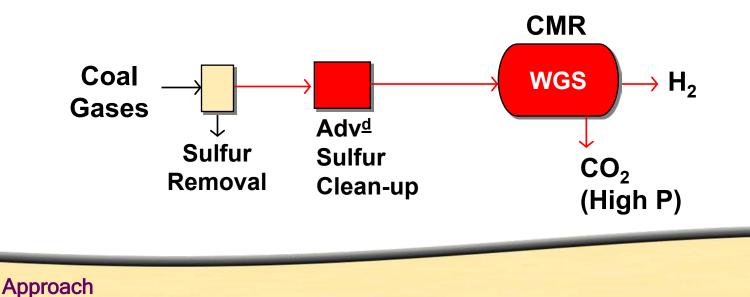
Technical Targets**

	H ₂ Flux [§] [scfh/ft ²]	Temp. [°C]	ΔP max. [psi]	H ₂ Purity	Sulfur Tolerance						
2010	200	300-600	400	99.5%	20 ppm						
2015	300	250-500	800-1000	99.99%	>100 ppm						
§@10	§ @ 100 psi ΔP H ₂ partial pressure										

CO Tolerance: Yes; WGS Activity: Yes



Project Objectives & Relevance


- Synthesis of composite Pd and Pd/alloy porous Inconel membranes for WGS shift reactors with long-term thermal, chemical and mechanical stability with special emphasis on the stability of hydrogen flux and selectivity
- Demonstration of the effectiveness and long-term stability of the WGS membrane shift reactor for the production of fuel-cell quality hydrogen
- Research and development of advanced gas clean-up technologies for sulfur removal to reduce the sulfur compounds to <2 ppm</p>
- Development of a systematic framework towards process intensification to achieve higher efficiencies and enhanced performance at a lower cost
- Rigorous analysis and characterization of the behavior of the resulting overall process system, as well as the design of reliable control and supervision/monitoring systems
- Assessment of the economic viability of the proposed intensification strategy through a comprehensive calculation of the cost of energy output and its determinants (capital cost, operation cost, fuel cost, etc.), followed by comparative studies against other existing pertinent energy technologies

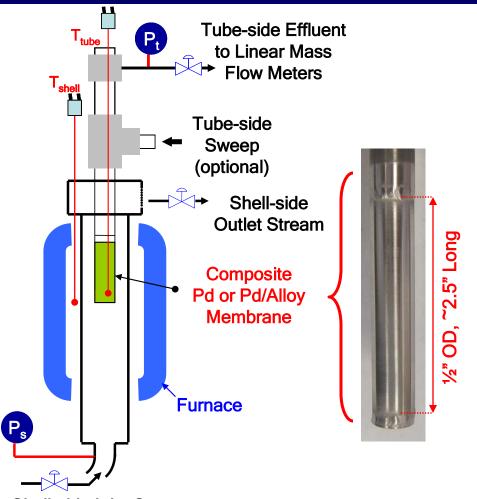
Approach: Coal Gasification & CMR

Novel Catalytic Membrane Reactor (CMR):

Project Schedule & Milestones

	Year 1		Year 2			Yea	r 3			Ye	ar 4					
Tasks	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q 4
Ιασκο								Мо	nths							
	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48
Gas Clean-up & Fast PSA using			M1		G1											
Structured Adsorbent						M2				M3						
		M4,														
Membrane Synthesis				M5				G2								
Membrane Characterization						M6										
& Reactor Performance										M7						
Membrane Reactor Modeling			M8													
Process Intensification					M9											
Process Control System;								M10								
Design & Implementation																
Process monitoring System;										M11						
Design & Implementation																
Address process safety;																
risk assessment/management																
Program Management & Reporting																

Membrane Properties & Permeation Test Set-up

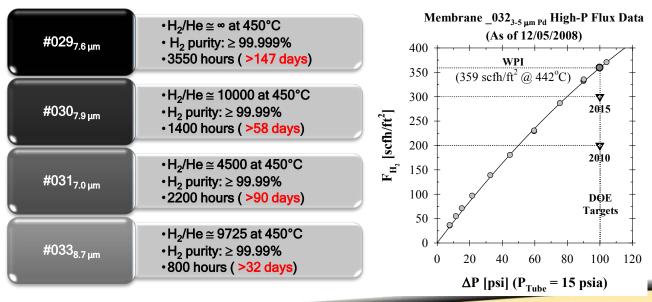

> Membrane:

Pd supported on porous Inconel (media grade 0.1 µm)

- Method of Preparation: Electroless Plating
- Geometry:

Tubular (Plated on the outside of a tube)

≻ Membrane Area ≈ 25 cm²


Shell-side Inlet Stream

Similar setup equipped w/ pre-heater, mixer, cold trap & GC was utilized for the mixed gas & WGS reaction tests

Previous achievements

- Excellent long-term H₂/He selectivity stability was achieved over a total testing period of ~3550 hours (>147 days) (membrane #029)
- Selectivity stability reproduced with membranes #030 / 031 / 033
- > The thicknesses of #029/030/031/033 were all higher than 7 μ m
- Selectivities in the order of 5000 -10 000 after long test at 450°C
- \blacktriangleright #032 showed high flux 359 scfh/ft² but low selectivity of 450 (<u>3-5 μ m thick</u>)

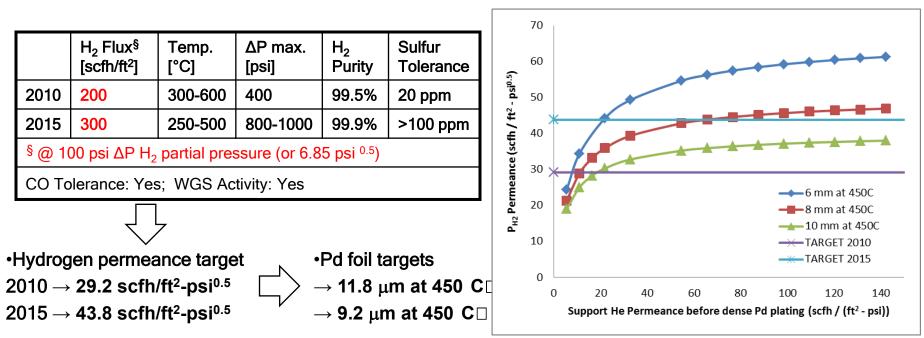
Technical Accomplishments

Progress Towards DOE H₂ Flux targets

Mem.	Support	LPd (µm)	Temp. (°C)	Time (hs)	Permeance / Pd Foil (scfh/ft ² -psi ^{0.5})	Selectivity (H ₂ /He)	F at ΔP=100 psi Exp. / Pd Foil (scfh/ft²)
034	0.1 μm/Inc.	8.7	300	200	12 / 24 🛛	-	82 / 164 🔟
035	0.1 μm/Inc.	20	300	150	6 / 10	-	82 / 68
036	0.1 μm/Inc.	11.4	450	100	33.4 / 35.2	-	229 / 241
036R	idem	12 (3-5 wt%Au)	450		16 / ~ 33	200	110 / 226
038	0.1 μm/Inc.	6	450	170	38 / 67	330	<u>280</u> / 459
039	0.1 μm/Inc.	7.3	450	165	33 / 55	The	presence of
040	0.1 μm/ PSS 316L	12.3	450	120	20 / 33		ss transfer
041	0.1 μm PSS 316L	8.6	450	200	20 / 47		n support is
042	0.1 μm PSS 316L	13.4	450	200	20 / 30	S	ignificant

I xx / xx = permeance of the composite membrane / permeance of a free-standing Pd foil having the same thickness II XX / XXX flux at $\Delta P=100$ psi of composite membrane / flux at $\Delta P=100$ psi of Pd foil with the same thickness RED = does not meet DOE's 2010 target

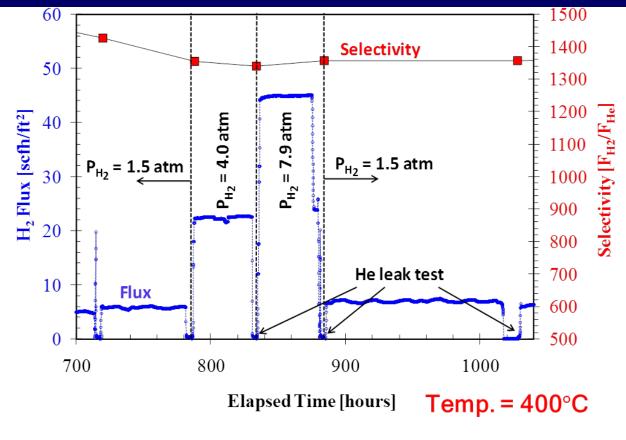
GREEN = exceed DOE's 2010 target but does not meet DOE's 2015 target


BLUE = meet DOE's 2015 flux target

Underlined = actually measured (not underlined = extrapolated from measured permeance)

8

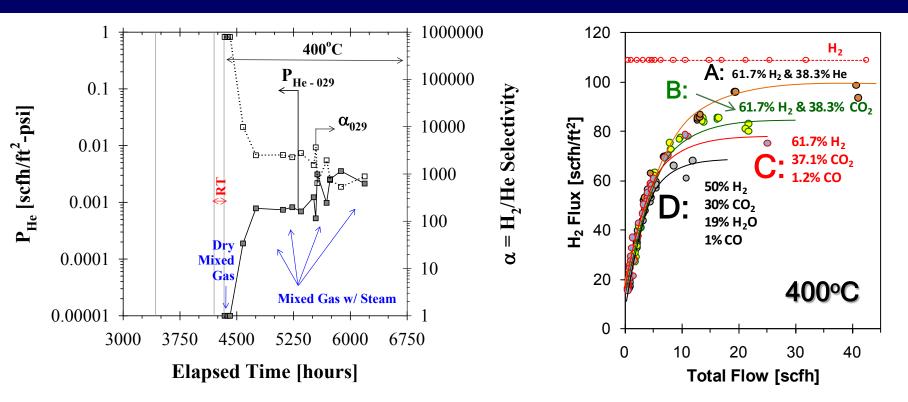
Support specifications


1 450°C was found to be an optimum temperature for WGS-MR in our group (see later)

- •Thickness targeted 7-8 μm (e.g., 029-031, very selective)
- •Support He permeance before Pd deposition higher than 65 scfh/(ft² psi)
- Bare support He permeance should be higher than 130 scfh/(ft² psi)

9

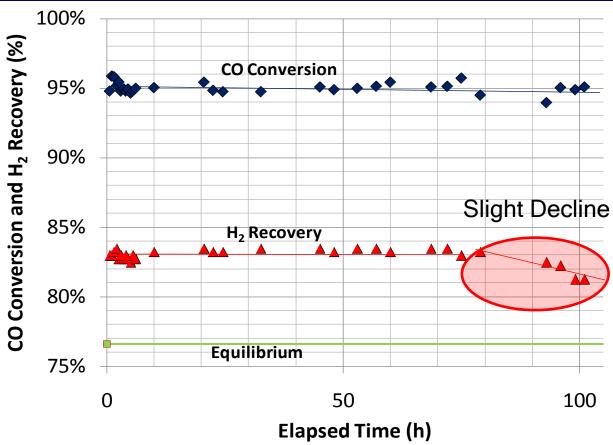
High Pressure H₂ Testing/Selectivity stability

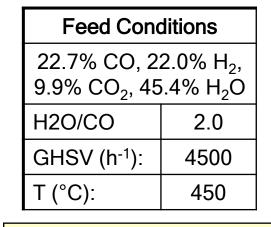


- •Membrane: MA-79
- •PSS support,
- •17 µm Pd/Ag layer,
- •10 µm dense Pd layer
- High pressure H_2 fed to the membrane for 100 hours
- Stable H_2 fluxes of 74.5 and 147 scfh/ft² at 60 and 120 psi respectively
- H_2 /He selectivity over 1000 and stable over the entire testing period

Pressures of 330 psi have also been tested → H₂/He Selectivity before and after 330 psi. equaled 250
 n(H/Pd) estimated at 0.05 at 330 psi / 450°C → max compression stress -300-500 Mpa
 → high pressure has a negligible effect on leak formation

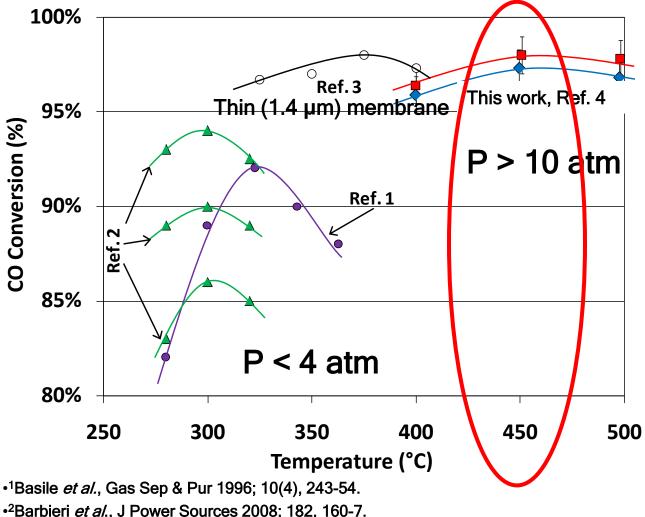
Worcester Polytechnic Institute


Mixed Gas Testing of Membrane #0297.6 µm Pd


- ➢ Mixed gas permeation testing for an additional ~3000 hours at ~400°C & at a △P range of 1-14 atm (P_{Low}=1 atm) w/ stable H₂ Flux, H₂/He Selectivity & no significant increase in He leak after successive testing at 400°C
- Below 10 scfh, high recovery (> 90%) and no significant/additional inhibiting effect of ~19% steam or CO on H₂ flux
- Permeate: H₂ only, no other gases were detected
- Retentate: High-pressure CO₂

Long-term WGS CMR_{13.1 µm Pd}

- Stable CO conversion and H₂ recovery were observed for up to 80 hours
- > Stable H_2 permeance after WGS test
- Significant selectivity decline after test



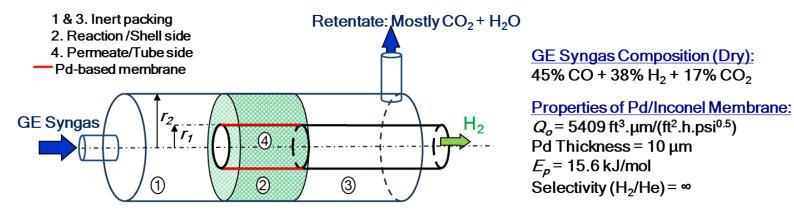
Membrane: AA-8R									
Selectivity (F _{H2} /F _{He})									
Initial	4000								
After WGS Experiment	400 (-90%)								
Permeance (scfh/ft ² psi ^{0.5})								
Initial	27.9								
After WGS Experiment	26.6 (-4.6%)								

WGS CMR Temperature Dependence

(existence of a maximum)

•³Bi *et al.*, Int J H Energy 2009; 34, 2965-71.

•⁴Augustine et al. Int. J. H. Energy, 2011, accepted for publication. Published online


Maximum in CO conversion results from balance between thermodynamic equil. and reaction kinetic

- At low temperatures
 Low catalytic activity
 High therm. equil. conv.
- At high temperatures High catalytic activity High permeance Low therm. equil. conv.

Technical Accomplishments

Existence of a temperature maximum at ≈450°C

2D Membrane Reactor Model

HT WGS catalyst

Mass balance equations at the unsteady state conditions:

 $\frac{\partial}{\partial t} \left(\frac{F_{H_2}}{F_{Total}} \right) = \frac{1}{C_{Total}^{Shell}} \left[-\frac{\partial F_{H_2}}{\partial v^{Shell}} + \frac{1}{\Delta v^{Shell}} \int_{W_y}^{W_{y+\Delta y}} r_{H_2} dw - \frac{Q \cdot A_m}{l \cdot \Delta v^{Shell}} \cdot \Delta P_{H_2}^{0.5} \right]$ Reaction side (1) $\frac{\partial}{\partial t} \left(\frac{F_{H_2}}{F_{Total}} \right) = \frac{1}{C_{Total}^{Tube}} \left[-\frac{\partial F_{H_2}}{\partial v^{Tube}} + \frac{Q \cdot A_m}{l \cdot \Delta v^{Tube}} \cdot \Delta P_{H_2}^{0.5} \right]$ Permeate side (2)

Energy balance equation in the reaction side at the unsteady state conditions

$$\left(\sum_{i=1}^{n} C_{i} c_{pi}\right) \frac{\partial T}{\partial t} = -\left(\sum_{i=1}^{n} F_{i} c_{pi}\right) \frac{\partial T}{\Delta v_{shell}} + (-r_{co}) [-\Delta H_{Rxn}(T)]$$
(3)

Two dimensional mass balance equations at the steady state and isothermal conditions:

$$\frac{\partial(u.C_i)}{\partial y} - \frac{D_{ef,i}}{u} \left[\frac{\partial^2(u.C_i)}{\partial r^2} + \frac{1}{r} \frac{\partial(u.C_i)}{\partial r} \right] + \rho_{bulk,cat} R_i = 0$$
(4)

Process Intensification

> Performance target levels: $X_{CO} = 98\% \& R_{H2} = 95\%$

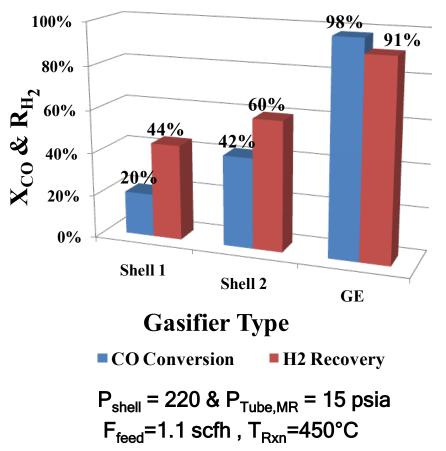
For the non-isothermal MR: $T_{Rxn,Max} = 500^{\circ}C \& T_{Rxn,Min} = 300^{\circ}C$ for pure Pd

Isothermal Case: 60 P_{shell} = 220 & P_{Tube,MR} = 6 psia F_{Drv feed}=1.1 scfh , T_{Rxn}=400°C 40 $\frac{V_{MR}}{V_{PBR}} \, [\%]$ F_{H2} Ratio MR / PBR W_{catalyst} H_2O : X_{co} R_{H2} [%] CO [%] 20 Ratio MR 2 99 96 0 1.2 1 9 **PBR** 98 -102.9 147 220.5 367.5 P_{Shell} [psia]

Non-isothermal Case:

 $P_{Shell} = 300 \& P_{Tube,MR} = 6 psia, F_{Drv feed} = 3.4 scfh$

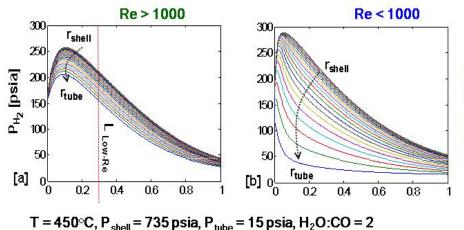
	H ₂ O:CO	X _{co} [%]	R _{H2} [%]	T _{Rxn,Max} [°C]	F _{H2} Ratio MR / PBR	Volume Ratio MR/PBR	W _{catalyst} Ratio	
MR	4	99.5	95	477	1 0	0.6	0.6	
PBR	9	98	-	395	1.2	0.6	0.6	

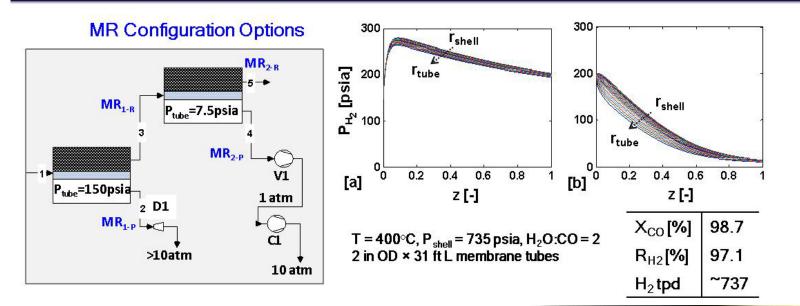

Pd/Alloy Membrane Reactors in IGCC Plants

	Shell 1	Shell 2	GE						
Scrubber T [ºC] →	128 160		243						
СО	56.4	49.6	15.6						
H ₂	29.7	26.3	15.1						
CO2	1.4	1.3	7.3						
H ₂ O	7	18.1	61						
N ₂	4.53	3.86	0.8						
Ar	0.7	0.6	0.8						
H ₂ S	0.24	0.21	0.12						
COS	0.02	0.02	0.12						
other	0.01	0.01	0.08						

Table 1. Syngas compositions[†]

GE (Gasifi	er
------	--------	----

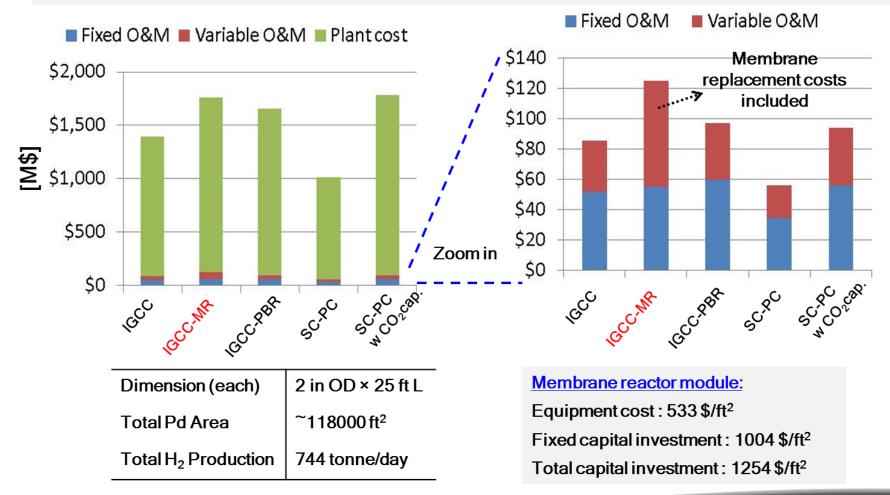

Highest H₂O:CO ratio
 Highest gasifier pressure
 Highest X_{CO} and R_{H2}
 Lowest H₂S +COS concentration


^b [†] http://sequestration.mit.edu/pdf/LFEE_2005-002_WP.pdf

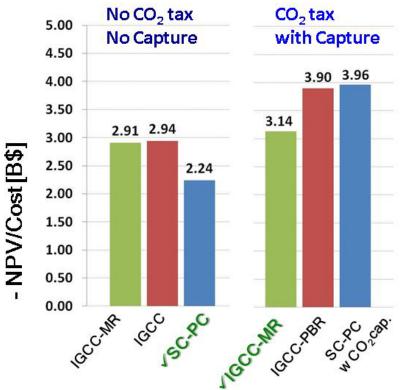
Two-Dimensional Isothermal Model Results

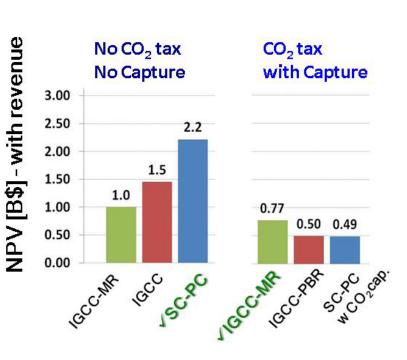
 \succ Good match between the experimental and modeling results for both $X_{CO}\,\&\,R_{H2}$

- > Operate Re > 1000, use longer tubes
- > Total Pd Area_{Re>1000} < Total Pd Area_{Re <1000}



Technical Accomplishments

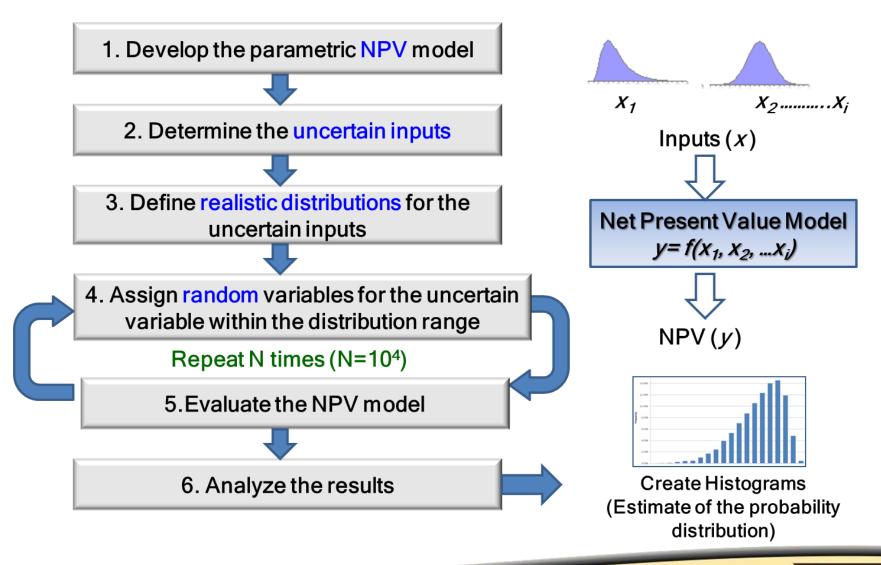

Capital - O&M Costs


Target: Coproduction of hydrogen and power by using Pd-based membrane reactors (Mitretek TR 2002-31) Cost analysis is based on GEE radiant only IGCC power-plant (DOE/NETL 2010/1397) + Pd/Inconel MR Assumption : 1 year membrane lifetime

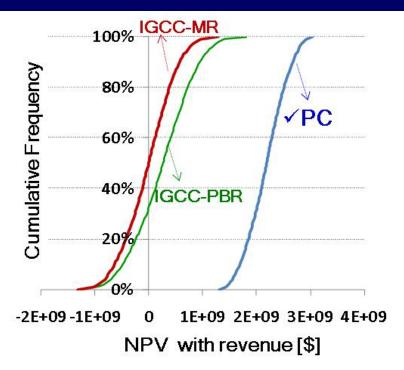
Net Present Value (NPV) Analysis

Assumptions:

- 40 years plant lifetime
- 1 year membrane lifetime
- Discount rate = 9% for MR 6% for the others
- Inflation rate = 2.5% (U.S. Dep. of Lab. Bureau)
- 25\$/tCO₂ tax, starting in 2015 (MIT, "Future of Coal")
- Electricity selling price = 9 ¢/kWh (U.S. Energy Inf. Adm.)

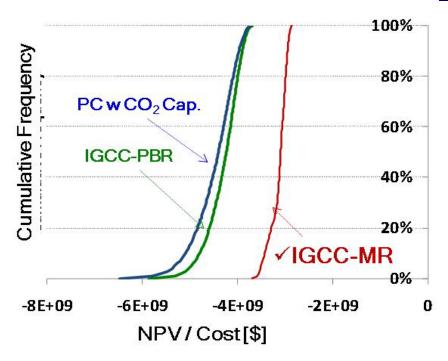

Flaw of averages
Risk in the uncertain inputs

Generate a more realistic distribution of the plant's economic value rather than a single-point/estimate


Technical Accomplishments

Monte Carlo simulations for uncertainties effect on NPV

Economic Evaluation in the Presence of Uncertainty with Monte Carlo Simulation



Current Situation

- No CO₂ tax
- PC capacity factor = 85%

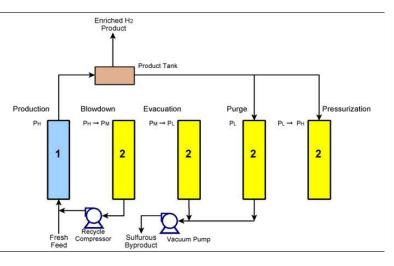
Uncertainty

- IGCC-MR & IGCC-PBR capacity factor = 40-80%
- Electricity selling price: min =6.6, most likely=8.4, max = 9.9 ¢/kWh

Regulatory action on carbon emissions after 2015 Uncertainty

- Initial CO₂ tax: min =0, most likely= 25, max = 100 \$/ tCO₂
- CO₂ tax growth rate: min = 2%, most likely= 5%, max = 8%
- Capacity factor = 60-85% for IGCC-PBR&MR 70-85% for PCwCO₂ cap.
- Pd price: Historical data

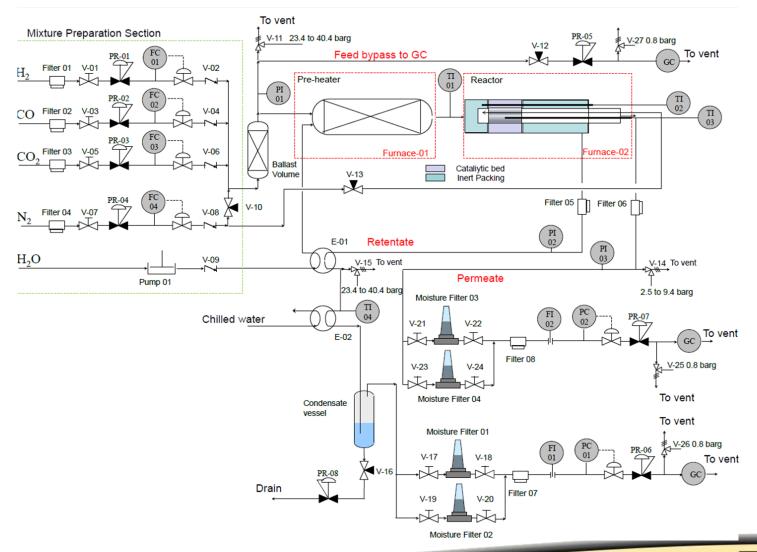
Technical Accomplishments

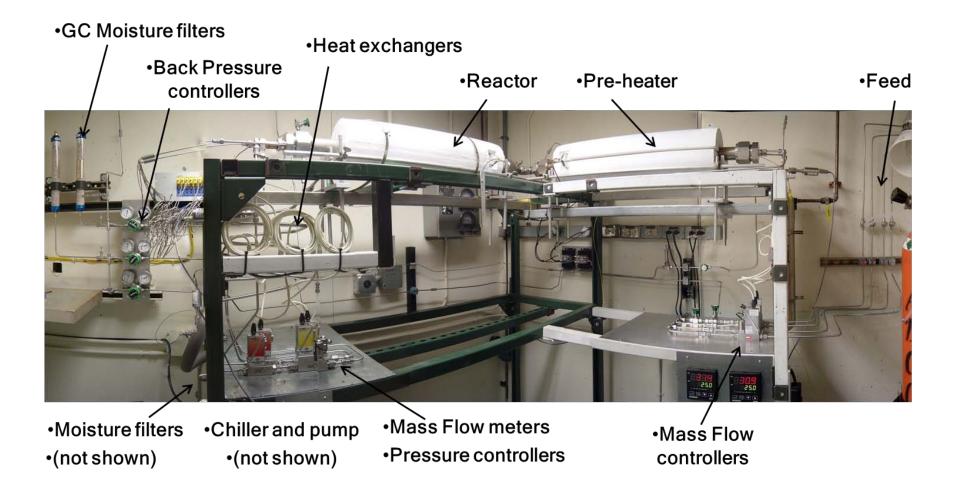

Collaborations Adsorption Research Inc. (ARI); sub

- Zeolite 5A and Hisiv 3000 were chosen for all tests
- Feed H₂S Concentration: 500 to 1,000 ppm(v)
 - Light Product = 98+% Helium (H₂) Recovery.
 - Light Product = Either <1 or <20 ppm H_2S .
- Feed: 500 ppm H₂S + 500 ppm COS \approx Same Performance as 1,000 ppm H₂S.
- Feed H₂S Concentration: 10,000 ppm(v)
 - ► Apparent Working Capacity Was Reduced.
 - Light Product = 97% Helium (H_2) Recovery.
 - Light Product = 1.4 ppm H_2S .
- CO₂ Recovery in Light Product Varied According To The Allowable H₂S Concentration in Light Product.

General conclusion:

PSA system and the cycle developed are promising however the loss of CO_2 for carbon capture is a prohibiting factor


Current PSA Cycle


PID of a new WGS CMR testing Rig at WPI

²³ Technical Accomplishments

new WGS CMR testing Rig at WPI

²⁴ Technical Accomplishments

Proposed Future Work (under grant DE-FE0004895)

- Test new grading techniques on bare support surfaces to achieve 8 μm Pd on any PSS support (alumina deposition)
- Test new Pd deposition methods (e. g. electrodeposition) for selectivity stability
- Continue long term WGS reaction study (an 1000 h run is planned) for both ½" OD and 1" OD membranes
- Asses the Syngas effect on selectivity stability
- > Continue Pd/Au alloying studies to improve H_2 flux
- > Study new coatings for Hydrogen sulfide poisoning inhibition
- Continue long-term sulfur poisoning & recovery experiments

Project Summary

- Membranes prepared by sequential annealing/polishing (pAP method) -with thickness higher than 7-8 μm have a stable selectivity over thousands of hours at 400-450°C (029/030/31/033) with permeances limited by mass transfer resistance in the support
- Flux of ~359 scfh/ft², which exceeded the DOE's 2015 H₂ flux targets [T=442°C & ΔP of 100 psi (with P_{Low}=15 psia)] was achieved but low selectivity H₂/He (~500) due to very low thickness (3-5 µm)
- Calculation made to establish that the minimum initial He permeance of 130 scfh /(ft²-psi) for the porous metal supports in order to achieve DOE's 2015 target with a 7-8 µm membrane at 450°C
- Completed the first WGS testing rig for 1"OD membranes at WPI
- Demonstrated that:
 - WGS reaction with high temperature catalyst (HIFUEL) occurs optimally at a temperature of ≈450°C
 - Effect of pressure on leak stability negligible
 - 97% CO conversion and 80% H₂ recovery achieved in an 18.1 µm thick Pd-based CMR operated at 450°C, ΔP=200 psi (P_{Low}=15 psia) and GHSV_{stp} = 2900 h⁻¹, exceeding the equilibrium conversion of 93%.

Project Summary

Successfully completed steady-state MSR & WGS reaction 2D modeling studies & process intensification analysis:

 A 2D model was developed to take into account radial gradients. Several configurations were modeled to achieve Xco > 98% and R_{H2} > 95% for the isothermal case.

> Successfully completed process intensification, safety and economic analysis:

- Safety boundaries for WGS feed gas composition, feed temperature, catalyst density have been established for the adiabatic case (in case cooling fails) to achieve Xco > 98% and R_{H2} > 95% keeping membrane temperature lower than 500°C.
- Capital -O&M costs was calculated to be around 1254 \$/ft² very close to DOE target (1000 \$/ft²)
- NPV analysis showed that if CO₂ taxes were implemented, IGCC-MR with carbon capture would be the preferred configuration.
- Monte-Carlo analysis was used to study the variability of 11 uncertainties and proved that with taxes on CO₂ emission, IGCC-MR configuration would be the preferred choice.
- Completed all simulations, tests of PSA cycles with commercial adsorbents and feeds including all reactants plus H₂S and COS (Sub, ARI).

PSA for hydrogen sulfide removal is however not included in the process intensification due to the high removal loss of CO₂

Project Summary Table: Permeation Results

	DOE T	argets	(Current WPI Mem	branes (1/2" (DD, 2.5" Len	gth, ~24 cm	²)
	2010	2015	#025R	#027	#029	#030	#031	#032
Flux [scfh/ft ²]	200	300	65.9	36.1	166	178	26.6	359
∆P (psi) H ₂ partial pressure (P _{Low} =15 psia)	100*	100*	15	15	100	102	15	100
Temperature [°C]	300-600	250-500	400	400	450	442	450	442
H ₂ /He Selectivity	n/a	n/a	~220	~120	8	10000	~4500	~450
Total Test Duration [hours]	n/a	n/a	1015	~1250	~4500	~1400	~2200	~523
Thickness [µm]	n/a	n/a	4.2 Pd	6.2 Pd/Au _{5 wt%}	7.6 Pd	7.9 Pd	7.0 Pd	3-5 Pd
WGS Activity	Yes	Yes	Not tested	Not tested	Not tested	Not tested	Not tested	Not tested
CO Tolerance	Yes	Yes	Not tested	Not tested	Yes	Not tested	Not tested	Not tested
S Tolerance [ppm]	20	>100	Not tested	Not tested	Not tested	Not tested	Not tested	Not tested
H ₂ Purity	99.5%	99.99%	99.0%	99.5%	≥99.999%	≥99.99%	99.98%	99.8%
∆P Operating Capability (Max. Sys. Pressure, psi)	400	800-1000	15**	15**	225**	102**	15**	100**

§ DOE-NETL Test Protocol v7 - 05/10/2008, * Standard conditions are 150 psia hydrogen feed pressure and 50 psia hydrogen sweep pressure

28 ** Maximum pressure tested, however, the ∆P can be higher since previous WPI membranes were tested up to 600 psi under MSR reaction conditions

	DOE T	argets	Current	WPI Membrar	nes (1/2" OD, 2	2.5" Length, [^]	~24 cm ²)
	2010	2015	AA-4R*	AA-5R*	AA-6R*	AA-7R*	AA-8R*
Flux [scfh/ft ²]	200	300	262.3	108.6	427.0	98.1	96.4
∆P (psi) H ₂ partial pressure (P _{Low} =15 psia)	100**	100**	245.1	71.0	222.7	45.4	37.1
Temperature [°C]	300-600	250-500	400	450	450	450	450
H ₂ /He Selectivity	n/a	n/a	71,000	2,800	1,100	25	670
Total Test Duration [hours]	n/a	n/a	1,030	1,080	860	350	970
Thickness [µm]	n/a	n/a	14.4	18.1	18.1	14.3	13.4
WGS Activity	Yes	Yes	Not tested	w/ packed catalyst	Not tested	w/ packed catalyst	w/ packed catalyst
CO Tolerance	Yes	Yes	Yes	Yes	Yes	Yes	Yes
S Tolerance [ppm]	20	>100	Not tested	Not tested	Not tested	Not tested	Not tested
H ₂ Purity	99.5%	99.99%	99.99%	99.96%	99.91%	96.2%	99.85%
∆P Operating Capability (Max. System Pressure, psi)	400	800-1000	250	250	250	250	250

§ DOE-NETL Test Protocol v7 - 05/10/2008

* R - repaired by mechanical treatment and Pd plating

	DOE T	argets	Current	Current WPI Membranes (1/2" OD, 2.5" Length, ~24 cm ²)						
	2010	2015	AA-12R	AA-14	AA-18	AA-21R	AA-22			
Flux [scfh/ft ²]	200	300	550.5	76.4	76.0	79.6	86.3			
∆P (psi) H ₂ partial pressure (P _{Low} =15 psia)	100**	100**	300	29	57	48	28			
Temperature [°C]	300-600	250-500	450	450	450	400	450			
H ₂ /He Selectivity	n/a	n/a	240	190	998	176	80			
Total Test Duration [hours]	n/a	n/a	150	360	400	864	144			
Thickness [µm]	n/a	n/a	12.7	11.4	19.6	22.0	13.5			
WGS Activity	Yes	Yes	Not tested	Not tested	Not tested	Not tested	Not tested			
CO Tolerance	Yes	Yes	Not tested	Not tested	Not tested	Not tested	Not tested			
S Tolerance [ppm]	20	>100	Not tested	Not tested	Not tested	Not tested	Not tested			
H ₂ Purity	99.5%	99.99%	99.6%	99.5%	99.9%	99.4%	98.8%			
∆P Operating Capability (Max. System Pressure, psi)	400	800-1000	400	250	250	400	250			

§ DOE-NETL Test Protocol v7 - 05/10/2008

* R - repaired by mechanical treatment and Pd plating

	DOE T	argets	Current	WPI Membrar	nes (1/2" OD, 2	2.5" Length, 7	~24 cm ²)
	2010	2015	AA-24	AA-25	AA-26		
Flux [scfh/ft ²]	200	300	84.6	59	51.2		
∆P (psi) H ₂ partial pressure (P _{Low} =15 psia)	100**	100**	37.8	16	23		
Temperature [°C]	300-600	250-500	400	450	500		
H ₂ /He Selectivity	n/a	n/a	360	78	233		
Total Test Duration [hours]	n/a	n/a	1220	170	288		
Thickness [µm]	n/a	n/a	16.2	20.6	12.8		
WGS Activity	Yes	Yes	Yes	Not tested	Not tested		
CO Tolerance	Yes	Yes	Yes	Not tested	Not tested		
S Tolerance [ppm]	20	>100	Not tested	Not tested	Not tested		
H ₂ Purity	99.5%	99.99%	99.7%	98.7%	99.6%		
∆P Operating Capability (Max. System Pressure, psi)	400	800-1000	250	250	250		

§ DOE-NETL Test Protocol v7 - 05/10/2008

* R - repaired by mechanical treatment and Pd plating

	DOE Targets		Current WPI Membranes (1/2" OD, 2.5" Length, ~24 cm ²)				
	2010	2015	RK01	RK02	RK03	RK04	
Flux [scfh/ft ²]	200	300	41.3	82	60.7	83.8	
∆P (psi) H ₂ partial pressure (P _{Low} =15 psia)	100**	100**	15	15	15	15	
Temperature [°C]	300-600	250-500	450	500	450	450	
H ₂ /He Selectivity	n/a	n/a	∞	112	2189	1000	
Total Test Duration [hours]	n/a	n/a	1023	373	1017	1250	
Thickness [µm]	n/a	n/a	14	30.8	22	13	
WGS Activity	Yes	Yes	Not tested	Not tested	Not tested	Not tested	
CO Tolerance	Yes	Yes	Not tested	Not tested	Not tested	Not tested	
S Tolerance [ppm]	20	>100	Not tested	Not tested	Not tested	Not tested	
H ₂ Purity	99.5%	99.99%	99.9999%	99.11%	99.95%	99.90%	
∆P Operating Capability (Max. System Pressure, psi)	400	800-1000	Not tested	Not tested	Not tested	Not tested	

§ DOE-NETL Test Protocol v7 - 05/10/2008

* R - repaired by mechanical treatment and Pd plating

