Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants

Carl Evenson Eltron Research & Development Inc. May 13, 2011

PD009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Phase I Start Oct. 1, 2005
- Phase II Start Oct. 1, 2009
- Phase II End June 2012
- ~75% Complete

Budget

- Total project funding: \$8,824,788
 - DOE Share: \$7,059,830
 - Contractor Share: \$1,764,958
- FY10 funding: \$2,500,000
- FY11 funding: \$1,869,229

Barriers Addressed

- Reducing hydrogen cost
- Membrane durability
- Membrane testing & analysis

Partners

- Project Lead: Eltron R&D
- Partners: Eastman Chemical Co.

Relevance

Overall Program Objectives

- Cost-effective H₂ / CO₂ separation system
- Retains CO₂ at gasifier pressures
- Operates near water-gas shift conditions
- Tolerates reasonably achievable levels of coal impurities

Objectives June 2010 – May 2011

- Membrane manufacturing Scale-up
- Construct, Install, & Operate 12 lbs/day membrane reactor
- Continued bench-scale testing

Technical Approach

- Materials Development
 - Membrane substrate manufacturer comparison
 - Catalyst deposition scale-up
- Performance Screening
 - Membrane testing under expected operating conditions for scale-up
 - Establish range of operating conditions
- Mechanical Design
 - Assess strength of materials, embrittlement, welding techniques, flow dynamics
 - Address manufacturing costs and maintenance issues
- Process Design and Economics
 - Integrate into IGCC flow sheets with and without co-production of $\rm H_2$ & power
 - Compare process economics versus other technologies
- Scale-up steps
 - 12 lbs/day H₂ production coal-based syngas slipstream
 - 250 lbs/day H₂ production coal-based syngas slipstream + WGCU

Approach - Milestones

	Milestone
FY10 Q3	Complete membrane module design and skid layout. Status: Completed
FY10 Q4	Complete construction of 12 lbs/day unit. Status: Completed
FY11 Q1	Complete installation of the 12 lbs/day reactor. Status: Completed
FY11 Q2	Complete mechanical shake-down of the 12 lbs/day reactor. Status: Completed
FY11 Q3	Collect hydrogen separation material and process performance data on the 12 lbs/day reactor. Status: In Progress
FY11 Q4	Update process economics based on 12 lbs/day performance. Status: In Progress

Eltron's Membrane System

Key Features

- 3-layer, dense metal alloy
 - Selfsupporting
 - 100% selective
- CO₂ retained at high pressure
- Operates near water-gas shift temperatures.

- Membrane
 Manufacturing
 - 5' long membrane tubes
 - 1⁄2" OD
 - 500 μm wall
 - Alloy catalyst deposited on the inside & outside surfaces
 - Uniform
 - Complete coverage

2' Tubular Membrane

- 500 μm
- 340°C
- Feed
 - WGS
 - 450 psig
- Sweep
 - N₂
 - 50 psig

70% H₂ Recovery

12 lbs/day H₂ Membrane Reactor Construction

- Skid Mounted System
- PLC Safety System
- 10' of ½" OD tubular membrane

12 lbs/day H₂ Membrane Module

12 lbs/day H₂ Membrane Reactor Installation

- Eastman Chemical Co. Kingsport, TN
- All utilities connected
- Mechanical shake-down
- Operator training

Operation

- 30 days
- Effect of operating conditions under coal-derived syngas and operating procedures on membrane performance
- Cycling
- Lifetime

Process Modeling / Techno-Economics

• DOE Financial Model v3.0

• Process Modeling / Techno-Economics

	Case 1	Case 2	Case 3	Case 4		
Pre- Combustion Gas Cleaning & CO2 Capture Method	2-Stage Selexol	Cold Gas (Amine) Cleaning & Eltron Membrane	Warm Gas Cleaning & Eltron Membrane	Warm Gas Cleaning & Eltron Membrane		
Gasifier Cooling Method	Quench	Radiant- Convective	Radiant- Convective	Quench		
Thermal Efficiency	27.4%	32.0%	33.6%	31.6%		
% CO2 Captured	90%	90%	95%	95%		
Cost of Electricity (\$/MWh)	115.5	114.5	106.0	100.4		

Collaborations

- Eltron Research & Development Inc.
 - Prime Contractor
- Eastman Chemical Co.
 - Subcontractor
 - Gasified coal slip-stream
 - WGCU
- Two Key Membrane Manufacturers

Future Work

- FY2011 Q3
 - Operate 12 lbs/day H₂ Unit
- FY2011 Q4
 - Preliminary Design 250 lbs/day H₂ Unit
 - Go / No-Go Decision
- FY2012
 - Design, build, operate 250 lbs/day H₂ Unit integrated with WGCU

Future Work – ARRA Project

- 10/1/10 9/30/15
- Total Project Cost: \$73.7 MM
- Scope
 - Accelerate 250 lbs/day pilot
 - Design, build, operate 4-10 T/day Pre-Commercial Module (PCM) demonstration reactor on coal-derived syngas
- Goal
 - Scale-up of HTM system for energy efficient carbon capture and hydrogen separation from industrial sources

Future Work – ARRA Project

D	Fask Name		0040	1		0044	1	0010	0010	0011	0045	
-			2010			2011		2012	2013	2014	2015	
		Qtr 1 Qt	tr 2 Qtr 3	Qtr 4	Qtr 1	Qtr 2 Qtr 3 Qtr 4	Qtr 1	Qtr 2 Qtr 3 Qtr 4	Qtr 1 Qtr 2 Qtr 3 Qtr 4	Qtr 1 Qtr 2 Qtr 3 Qtr 4	Qtr 1 Qtr 2 Qt	r 3 Qtr 4
1	Scale-Up of Hydrogen Transport Membranes		() — (0	
2	Project Management		(
3	Task 1 Project Management, Planning, and Reporting		(—								
8	Membrane Scale-Up		(•			
9	Task 2 Membrane Technology Development Acceleration & Scale-Up		(
17	Pre-Commercial Module		(—								
18	Task 3 PCM Pre-FEED		(
21	Task 4 PCM FEED					ا ټ						
24	Task 5 PCM Detailed Design & Construction											
29	Task 6 PCM Operation & Analysis									₩,		
32	Task 7 Process Modeling, Techno-Economics, & Commercial Applications	E	(

17

Future Work ARRA Project - Status

- Cooperative agreement signed Feb. 18, 2011
- 10' tubular membrane procured
- RFP issued to EPC firms
- Evaluating 3 potential sites

Summary

- Relevance
 - Cost-effective H_2 / CO₂ separation system
- Approach
 - Demonstrate performance and economics on gasified coal feed streams
- Technical Accomplishments
 - Catalyst deposition was successfully scaled up
 - 12 lbs/day reactor designed, constructed, installed at Eastman Chemical Co.
- Collaborations
 - Evaluating membrane substrate tubing from two manufacturers.
- Future Work
 - Scale-up testing on gasified coal feed stream
 - 250 lbs/day H₂ membrane unit

Backup Slides

DOE Performance Targets

Performance Criteria	2010 Target	2015 Target	Eltron Membrane	
Flux (SCFH / ft ²)	200	300	320	
Operating Temperature (°C)	300-600	250-500	300-400	
S Tolerance (ppmv)	2	20	2-20	
System Cost (\$/ft ²)	500	<250	<200	
△P Operating Capability (psi)	400	800-1000	1000	
Carbon Monoxide Tolerance	Yes	Yes	Yes	
Hydrogen Purity (%)	99.5	99.99	99.999	
Stability / Durability (Years)	3	>5	0.9	
Permeate Pressure (psi)	N/A	N/A	>400	

ΕΛSTΜΛΝ

