Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery

Don Baldwin, Principal Investigator
Norm Newhouse, Presenter
Lincoln Composites, Inc.

Project ID\# PD021

Overview

Timeline

- Phase I July 08 - June 09
- 100\% Complete
- Phase II June 09 - June 11
- 5\% Complete
- Looking to extend completion date to June 12

Budget

- Total project funding (Phase I\&II)
- DOE share \$3M
- Contractor share $\$ 2.73 \mathrm{M}$
- Funding received in FY10-\$610K
- Planned Funding for FY11-\$900K

Barriers

- Barriers addressed
- Gaseous Hydrogen Storage and Tube Trailer Delivery Costs
- System Weight and Volume
- Efficiency
- Targets
- \$500/kg of H2 stored by FY2010, \$300/kg by FY2015
- Volumetric capacity $0.03 \mathrm{~kg} / \mathrm{liter}$ by FY2010, >0.035 kg/liter by FY 2015
- Tube trailer delivery capacity 700 kg by FY2010 and 1,100 kg by FY2017

Partners

- Discussions with ABS on vessel qualification
- Discussions with US DOT

Project Objectives

- Relevance: to reduce the cost of a near-term means of transporting gaseous H_{2} from the production or city gate site to the station.
- Design and develop the most effective bulk hauling and storage solution for hydrogen in terms of cost, safety, weight, and volumetric efficiency. This will be done by developing and manufacturing a tank and corresponding ISO frame that can be used for the storage of hydrogen in a stationary or hauling application was developed and manufactured in 2009. Complete 4Q 2009.
- Based on current knowledge of tube trailer design, carry out preliminary design and qualify a 3600 psi tank and ISO frame that will hold 510000 in ${ }^{3}(\sim 8500 \mathrm{~L})$ water volume. Complete 4Q 2009.
- Complete trade studies needed to increase vessel capacity by increasing pressure to 5000 psi (ultimately exceeds the DOE's FY01 capacity target by >15\%). Complete 1Q 2011.
- Based on the results of the trade studies, move forward on the design, manufacture and qualify a 5000 psi vessel/system.

Objectives-Technical Targets

Hydrogen delivery targets
\$500/kg of hydrogen stored by FY2010, $\$ 300 / \mathrm{kg}$ by FY2015

Volumetric capacity $0.03 \mathrm{~kg} /$ liter by FY2010, >0.035 kg/liter by FY 2015

Tube trailer delivery capacity 700 kg by FY2010 and 1,100 kg by FY2017

ISO container with four 3600 psi tanks 2009 Work Scope)

The current ISO assembly, with four tanks installed, can store about 600 kg of compressed hydrogen gas at 3600 psi with a safety factor of 2.35 . It is estimated that the cost will be $\$ 675-\$ 750$ per kg of hydrogen depending on market demand.
The baseline tank has a capacity of 150 kg hydrogen in a volume of ~ 8500 liters, achieving a performance of ~ 0.018 $\mathrm{kg} / \mathrm{iter}$.

This performance measure can be increased 33% to 0.024 $\mathrm{kg} / \mathrm{iter}$ by increasing the service pressure to 5000 psi and 95% to $0.035 \mathrm{~kg} / \mathrm{liter}$ by increasing the service pressure to 8300 psi.
The current ISO assembly, with four tanks installed, will contain about 600 kg of hydrogen.

This can be increased 33% to about 800 kg by increasing the service pressure to 5000 psi and 44% to about 1150 kg by increasing the service pressure to 8300 psi.

Approach/Milestones

DOE Hydrogen Program

Task 1.0 Develop and Qualify a 3600 psi Tank
-design and qualify a tank that will hold approximately 8500 liters of water at 3600 psi

- Primary focus will be on manufacturing methods of a tank this size
-Completed 4Q 2009

Task 4.0 Develop and Qualify a 5000 psi Tank

- Same test will be used to qualify a higher pressure tank that was used on the 3600 psi tank

Task 2.0 Develop and Qualify an ISO Frame

- ISO container assembly will be able to hold four tanks with a combined capacity of 600 kg of hydrogen
-Completed 3Q 2009

Task 3.05000 psi Trade Study

- A higher pressure tank will be required to meet DOE goals
- Initial review suggest a 5000 psi tank will be the most cost effective
-Completed 1Q 2011

Task 5.0 Cost
Reduction Studies

- Methods to reduce cost of the tank will be investigated meet DOE goal

Task 6.0 Investigate Increased Capacity

- Increased pressure will increase capacity of the tanks, but the price will also increase. Other methods to increase capacity will be researched.

Technical Accomplishments/ Progress/Results

- Successful completion of all qualification tests for a 3600 pressure vessel
\checkmark Hydrostatic Burst Test
\checkmark Ambient Pressure Cycle Test \checkmark LBB (Leak Before Burst) Test
\checkmark Penetration (Gunfire)
\checkmark Environmental Test
\checkmark Flaw Tolerance Test
\checkmark High Temperature Creep Test
\checkmark Accelerated Stress Rupture Test
\checkmark Accelerated Stress Rupture Test \checkmark Natural Gas Cycle Test with Blowdown

Technical Accomplishments/ H_{2} Progress/Results

$\checkmark \quad$ Pressure vessel targeted at 3600 as infrastructure already in place to utilize
$\checkmark \quad$ Designed to meet industry standard transporting dimensions
$\checkmark \quad$ Completed stress analysis on frame
$\checkmark \quad$ Performed DFMEA
\checkmark Performed HazID analysis
\checkmark Developed pressure relief system for fire protection

Completed the design, manufacture and assembly of ISO container (standard dimensions) capable of storing ~600 kg H2 @ 3600 psi.

Completed Testing of ISO Container
\checkmark Dimensional
\checkmark Stacking
\checkmark Lifting - Top and bottom
\checkmark Inertia Test
\checkmark Impact Test
\checkmark Bonfire

Trade Studies

- Trade studies were undertaken to evaluate potential targets that would increase utilization storage design that best meet or exceed DOE targets
- Key Factors
- Module Volume (increased utilization)
- Cylinder Size
- Packing Efficiency
- Cylinder Design (increased H2 density)
- Cost Reduction
- Stress Ratio
- Working Pressure
- Storage Temperature

Design Baseline/Gap Audit

- Lincoln Composites Titan Module
- Current Lincoln Composites product (chosen as the baseline for the trade studies)
- Intermodal ISO 668 1A Frame
- 4x Type 4 Cylinders
- 250 bar Working Pressure
- Carbon Fiber, 2.35 SR
- Increase Capacity (kg H2 per Liter)
- Increase Pressure and/or Utilization
- From 0.018 kg to 0.03 kg of H2 per Liter
- From 616 kg to 700 kg H 2 Capacity at 15C
- Decrease Cost (\$ per kg H2)
- From $\$ 500$ per kg to $\$ 452$ per kg H2

Trade Factor \#1: Cylinder Size

- Titan Module
- 4 Cylinders in Horizontal 2×2 Arrangement
- 60 \% Utilization
- A Single Large Cylinder
- 63 \% Utilization
- T/D Ratio: Liner Fabrication Limitations
- Pipe Extrusion, Injection Molding of Heads
- Welding of 254 mm Wall

Trade Factor \#2: Cylinder Packing

- Add More Cylinders to Titan
- 4 Along Sides and 1 Center
- 68 \% Utilization
- Difficult to Incorporate
- L/D Ratio: Straightness and Winding Stability
- Two Cylinders in Each Position
- Center Support or Strap Mount
- Plumbing Manifold
- 8 Cylinders in $3 \times 2 \times 3$ Arrangement
- 56 \% Utilization
- Many Smaller Nested Cylinders
- 91 Cylinders in Vertical Arrangement
- L/D Ratio: Straightness and Winding Stability
- 68 \% Utilization
- Complexity and Cost of Plumbing
- Considerably More Difficult to Service

Trade Factor \#3: Working Pressure
 DOE Hydrogen Program

- Increasing H2 Density by Raising Working Pressure
- 33 \% Increase in Capacity at 15 C
- . $024 \mathrm{~kg} / \mathrm{L}$ at 350 bar
- $.018 \mathrm{~kg} / \mathrm{L}$ at 250 bar

- Practical Limit is 350 bar
- Higher pressures exacerbates thick-wall effects and reduced strength translation
- Availability of Plumbing Hardware
- Availability of H2 Compressors

Trade Factor \#4: Storage Temperature

DOE Hydrogen Program

- Increase H2 Density by Lowering Storage Temperature
- 22 \% Increase at 250 bar
- . $018 \mathrm{~kg} / \mathrm{L}$ at 15 C
-. $022 \mathrm{~kg} / \mathrm{L}$ at - 40 C
- 61 \% Increase at 350 bar
- . $029 \mathrm{~kg} / \mathrm{L}$ at -40 C

Trade Factor \#5A: Module/Cylinder Cost

Trade Factor \#5B: Pressure Vessel Costs

Liner Cost

- Use Less Material or Lower Cost
- Presently at minimum T/D ratio suitable to both liner fabrication and filament winding
- No Known Lower Cost Alternate
- Weldable, Cold Ductility, Permeation
- Steel End Bosses
- Size Constrained by Mounting Interface
- Cost Savings Have Marginal Affect

Composite Cost

- Carbon Fiber
- Lowest SR of Allowable Fibers
- T700 Greatest Strength per Unit Cost
- Direct Material (incl. Epoxy)
- Wind Time Costs
- Higher strength carbon fibers have a 2-4x increase in cost for 15-40\% in strength

Trade Factor \#6: Stress Ratio

- Reduce weight and cost by lowering carbon fiber usage (stress ratio)
- Titan: 2.35 SR based on CNG Requirements
- 2.25 SR Allowed per ASME for H2
- 2.00 SR is Considered Safe

Trade Studies Conclusions

- 350 bar Titan Logical Next Step - 2.25 SR Design will Fit Titan Frame - . 018 to .024 kg H 2 per Liter
- 616 to 822 kg H 2 Capacity
- \$500 to \$452 per kg H2
- Cold Storage Adds Cost
- Adding Cylinders Adds Cost

Collaborations

- Current and future customers regarding hydrogen storage at 350 bar
- American Bureau of Shipping on qualification of existing and potential changes to composition of current pressure vessels
- Discussions with DOT on approval of bulk hauling container in the US

Future Work

- FY 11
- Complete design and qualification of higher pressure tank based on results from trade study. Results from the trade studies indicate this will be a 5000 psi tank.

Summary

- Hydrogen delivery and storage are key to the roll out of PEMFC technology
- Low cost, near-term delivery pathways such as tube trailer transport will enable early adoption of these technologies
- Developing a bulk storage unit that can be transported on an ISO frame is a critical part of this strategy.

Technical Targets

DOE Goals

$\$ 500 / \mathrm{kg}$ of hydrogen stored by FY2010, $\$ 300 / \mathrm{kg}$ by FY2015

Volumetric capacity 0.03 kg/liter by FY2010, >0.035 kg/liter by FY 2015

Estimated Results

3600 psi - $\$ 500$ per kg of H2
5000 psi - $\$ 452$ per kg of H2
Current 3600 psi tank - $0.018 \mathrm{~kg} / \mathrm{liter}$
Raising pressure to $5000 \mathrm{psi}-0.024 \mathrm{~kg} / \mathrm{liter}$
Lowering storage Temperature:
$\cdot 0.022 \mathrm{~kg} / l i t e r$ at 3600 psi
$\cdot 0.029 \mathrm{~kg} / \mathrm{liter}$ at 5000 psi

3600 psi - contains 616 kg of hydrogen.
5000 psi - would contain approximately 822 kg of hydrogen.

Current tank is 3600 psi.

