

Hydrogen Embrittlement of Structural Steels

Brian Somerday Sandia National Laboratories May 10, 2011

Project ID # PD025

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000

Overview

Timeline

- Project start date Jan. 2007
- Project end date Oct. 2011*
- Percent complete 50%

Budget

- Total project funding (to date)
 - DOE share: \$900K
- FY10 Funding: \$150K
- FY11 Funding: \$200K

*Project continuation and direction determined annually by DOE

Barriers & Targets

- Pipeline Reliability/Integrity
- Safety, Codes and Standards, Permitting
- High Capital Cost and Hydrogen Embrittlement of Pipelines

Partners

- DOE Pipeline Working Group
 - Federal Labs: Sandia, Oak Ridge, Savannah River, NIST
 - Universities: Univ. of Illinois
 - Industry: Secat, industrial gas companies, ExxonMobil
 - Standards Development
 Organizations: ASME

Objectives/Relevance

- Why steel hydrogen pipelines?
 - Safety of steel pipelines well understood (e.g., third-party damage tolerance, vulnerability of welds)
 - Hydrogen pipelines safely operated under *static pressure*
- Demonstrate reliability/integrity of steel hydrogen
 pipelines for cyclic pressure
 - Address potential fatigue crack growth aided by hydrogen embrittlement, *particularly in welds*
- Enable pipeline design that accommodates hydrogen embrittlement
 - Ensure relevance to pipeline design code ASME B31.12
- FY10-FY11: measure fracture thresholds and fatigue crack growth laws for X52 steel in H₂ gas, emphasizing welds

Approach

- Apply unique capability for measuring fracture properties of steels in high-pressure H₂
 - Fracture properties serve as inputs into reliability/integrity assessment as specified in ASME B31.12 pipeline code
 - Milestone: Measure fracture thresholds for X52 steel base metal and seam weld (75% complete)
 - Milestone: Measure fatigue crack growth laws for X52 steel base metal and seam weld (75% complete)
 - Evaluate effect of load-cycle frequency on measurements
- Emphasize pipeline steels and their welds identified by stakeholders as high priority
 - Provide feedback to stakeholders through DOE Pipeline Working Group

Reliability/integrity assessment framework in ASME B31.12 requires fracture data in H₂

- Two fracture properties in H_2 needed
 - -Fatigue crack growth law
 - -Fracture threshold
- Reliability/assessment framework accommodates H₂ embrittlement

cycles to critical

crack depth (N_c)

1.0

Fracture data in H₂ measured using specialized laboratory capability

Measured fracture properties of technologically relevant steel: API 5L X52

- Tested same X52 steel from DOE Pipeline Working Group tensile property round robin
 - Stakeholders expressed interest in X52 steel
- Tensile properties
 - Yield strength: 62 ksi (428 MPa)
 - Ultimate tensile strength: 70 ksi (483 MPa)

base metal

Accomplishment:

Crack initiation thresholds measured for X52 in H₂ as function of loading rate

- Loading rate must be selected to balance test efficiency and data reliability
- Fracture threshold values ~80-100 MPa m^{1/2} favorable for pipeline reliability/integrity

Crack initiation thresholds similar for three different pipeline steels

X60 and X80 data: C. San Marchi et al., ASME PVP2010-25825, 2010

• Measurements for three steels conducted by participants in Pipeline Working Group

Measurement of fatigue crack growth laws must consider effects of frequency

A.H. Priest, British Steel, EHC-(1)42-012-81UK(H), 1983

Condition for H penetration to affect crack growth:

Frequency effects most pronounced at high da/dN

Accomplishment:

Measured effects of frequency on fatigue crack growth laws for X52 base metal

- Tests at higher frequency (> 1 Hz) yield nonconservative data at high crack growth rates
- Frequency selected must balance test efficiency (i.e., duration) and data reliability
 - Tests for comparing different materials (e.g., base metal vs welds) conducted at 1 Hz

Accomplishment:

Measured fatigue crack growth laws for X52 steel base metal and ERW (seam weld)

- Fatigue crack growth laws for X52 base metal and ERW similar in $\rm H_2$
- Notable variability in data from replicate tests for both base metal and ERW in H₂

Fatigue crack growth laws can be used to evaluate reliability/integrity of X52 H₂ pipelines

Accomplishment: Examined fracture surfaces from fatigue crack growth specimens

- Base metal in H_2 exhibits intergranular fracture at low ΔK
- ERW in air (R=0.5) exhibits unstable fracture at $K_{max}{\sim}40$ MPa $m^{1/2} \rightarrow$ cleavage

Collaborations

- DOE Pipeline Working Group (PWG)
 - Participants funded by DOE FCT Program
 - Federal Labs: Sandia, Oak Ridge, Savannah River
 - Universities: Univ. of Illinois
 - Industry: Secat
 - Participants not funded by DOE FCT Program
 - Federal Labs: NIST
 - Industry: industrial gas companies, ExxonMobil
 - Standards Development Organizations: ASME
 - Extent of collaborations include:
 - PWG meetings (up to 2 times/year) for participants to report results and receive feedback
 - Leveraging resources for testing (e.g., Secat-Sandia)
 - Supplying materials (e.g., ExxonMobil-Sandia)
 - Coordinating testing (e.g., NIST-Sandia)

Proposed Future Work

Remainder of FY11

- Expand evaluation of X52 seam weld to understand implication of cleavage fracture
- Determine threshold level of O₂ to inhibit accelerated fatigue crack growth of X52 steel in 21 MPa H₂ gas
- Measure fatigue crack growth law of girth weld fusion zone in H₂ gas

FY12

- Measure fatigue crack growth law of girth weld heataffected zone (HAZ) in H₂ gas
- Evaluate effects of load-cycle frequency on O₂ inhibition of H₂-accelerated fatigue crack growth

Summary

- Measured fracture thresholds and fatigue crack growth laws allow evaluation of reliability/integrity of steel H₂ pipelines
 - Hydrogen embrittlement accommodated by measuring fracture properties in H₂ following ASME B31.12 design standard
- Measurements on X52 steel reveal the following trends:
 - Fracture thresholds of base metal in H₂ (~80-100 MPa m^{1/2}) are favorable for pipeline reliability/integrity
 - Fatigue crack growth laws for base metal and seam weld are similar in $\rm H_2$
 - Unstable cleavage fracture observed in seam weld at $K_{max} \sim 40$ MPa $m^{1/2}$ during fatigue crack growth testing in air

