

Solar-thermal ALD Ferrite-Based Water Splitting Cycles

Jonathan Scheffe^a, Melinda Channel^a, Paul Lichty^a, Janna Martinek^a, Carl Bingham^b, Allan Lewandowski^b, Mark Allendorf^c, Anthony McDaniel^c, Eric Coker^c, Aldo Steinfeld^d and <u>Alan Weimer</u>^a

^aUniversity of Colorado at Boulder ^bNational Renewable Energy Laboratory ^cSandia National Laboratories

^cSandia National Laboratories

^dETH Zurich

May 12, 2011

This presentation does not contain any proprietary, confidential or otherwise restricted information

Project ID No. PD028

Overview

Timeline

- 6-1-2005
- 9-30-2012
- 80% completed

Budget

Total Project Funding

2005-2010: \$900K DOE

\$270,000 Cost Share

•Funds received in FY11

\$310,000 (subcontract from SNL)

\$ 77,500 Cost Share

Partners

National Renewable Energy Laboratory (NREL) Swiss Federal Research Institute (ETH Zurich) Sandia National Laboratories (SNL)

Barriers

U. High-Temperature Thermochemical Technology

V. High-Temperature Robust Materials

W. Concentrated Solar Energy Capital Cost

X. Coupling Concentrated Solar Energy and Thermochemical cycles

Objective

 Develop and demonstrate robust materials for a two-step thermochemical redox cycle that will integrate easily into a scalable solar-thermal reactor design and will achieve the DOE cost targets for solar hydrogen:

(\$6/kg H₂ in 2015; \$3/kg H₂ in 2020)

 Milestone – On-sun demonstration of the hercynite cycle for a single reactor tube with monitoring of product gases using mass spectrometry

Solar-thermal Water Splitting Ferrite Cycles

Ferrite Cycle Challenges

•Transport Limitations; • Small Operating T Window; • Sintering/Deactivation

Address Identified Weakness

Weakness Identified (H2A related) -

- "...include processing cost to make the films..."
- "...account for inert substrate sensible heat loss i.e. highcarrier solids..."
- "...operation and maintenance costs are underestimated..."
- "...all key H2A assumptions and corresponding bases need identified.."

Weakness Addressed

Team worked with independent H2A contractor TIAX and H2A economics presented here have been reviewed by TIAX and compared with other solarthermal processes

100,000 kg H_2 /day Field Design

- Six 223 m tall towers with 3 heliostat fields/tower (2,332 GWhr/yr)
- 1,168 acres of land in Daggett, CA
- 209 MW_{th} delivered to each solar reactor
- Net concentration 3,868 suns with an annual η = 40.2%

Results – Process Efficiencies

Source	Efficiency, η	Equation	
Heliostat Field (Solar to Receiver)	40.2%	Soltrace	
Thermal	51.7%	$\eta_{Thermal} = \frac{H_2 LHV}{Solar + e_{Consumed}}$	
STCH	20.8%	$\eta_{STCH} = \frac{H_2 LHV}{Solar/\eta_{Field} + e_{Consumed}^{-}/\eta_{Offsite e}}$	

H2A Results – 100,000 kg H₂/day (central)

H2A Results – 100,000 kg H_2 /day (central)

Materials Design is Key

(reduce/eliminate diffusional resistances)

- Atomic layer deposition (ALD) provides an ideal platform to study this chemistry
- Deposition on high surface area supports
 - increase reactive surface area
 - vary surface area in a controlled manner
 - Vary substrate chemistry/morphology
- Control of film/layer thickness and stoichiometry

Support and EDS Mapping (CoFe₂O₄ thin ALD films)

Low X bulk m-ZrO₂ Support High X bulk m-ZrO₂ Support

ALD CoFe₂O₄ on ZrO₂ Supports

- ZrO₂ support; 50 m²/g as received
- 2 nm CoFe₂O₄ film via ALD
- Raman Spectra confirm CoFe₂O₄

Scheffe, J.R. et al., in press, Chemistry of Materials (2011)

CO₂/H₂O Splitting in High Temperature Stagnation Flow Reactor

Thin Films Provide for Rapid Kinetics

Peak H₂ Rate 40 µmol H₂/s/g in 20 s

- 50% conversion achieved in < 23 s for thin film</p>
 - High surface area, likely no oxide film diffusion limitation
 - No noticeable deactivation for ALD CoFe₂O₄ films/ZrO₂

Sintering and Phase Segregation During High Temperature Cycling (1450°C reduction)

H₂O Oxidation Behavior Comparison

- Similar amount of H₂ produced by both structures/cycle.
- Peak rate analysis indicates differences between sintered ALD and co-precipitate composite structures.
 - Greater peak H₂ production rate (~ 10 X) for sintered ALD film
 Sandia National Laboratories

ALD Rate comparison – thin film vs. aggregates

Chemical Reduction (thin films)

Thermal Reduction (aggregates)

- More H₂ produced using thin films/cycle (~ 2X)
- Peak rate analysis indicates differences between intact thin films and sintered ALD structures.
 - Greater peak H₂ production rate (~ 10 X) for ALD thin film Sandia National Laboratories

-18-

ALD Rate comparison – thin film vs. bulk prepared

ALD thin film peak production rate ~ 100X faster than bulk

H2A Results – 100,000 kg H_2 /day (central)

"Hercynite" vs. Ferrite Cycle H₂ Production (oxidation @1000°C)

Scheffe, J.R. et al., <u>Int. J. of H₂ Energy</u>, <u>33</u>, 3330-3340 (2010)

Comparative Reduction Step FACTSageTM Free Energy Minimization

H2A Results – 100,000 kg H₂/day (central)

ſ

T_R

0

Multi-tube Cavity/Receiver Reactor

Active ferrite/"hercynite" cycle materials packed in small diameter SiC tubes in bundles

H2A Results – 100,000 kg H₂/day (central)

Novel Skeletal Al₂O₃ Support Material (promotes heat/mass transfer)

- Large Pore Volume
- Large Pores
- Easily Controlled High Surface Area > 100m²/g

Cross sectioned surface of alumina support material

ALD CoFe₂O₄ Film on Skeletal Al₂O₃

cobalt ferrite@73k-2.tif Cal: 0.190223 nm/pix 12:43:56 p 02/08/11

20 nm HV=80.0kV Direct Mag: 73000x

~ 20 wt% ferrite

H₂O Splitting w/Skeletal Al₂O₃

Address Identified Weakness

Weakness Identified –

"There is a sense that this project is not likely to produce a practical option for hydrogen generation"

Weakness Addressed

- H2A economics indicates that the thin film ferrite cycle is projected to achieve both the 2015 and 2020 base case assumption H2A targets – per TIAX review
- The team has demonstrated that H₂ can be produced with reduction T < 1200°C using the "hercynite" cycle - having a stable solid intermediate, opening the door to a potentially efficient and robust process using metal alloy containment materials

Opportunity

- An opportunity exists for widespread application in the Mohave Desert where a hybrid process produces renewable H₂ via water splitting with a multiple-effect evaporator process producing distilled/potable water from sea water – interfaced for efficient heat integration
 - Pathway to renewable H₂
 - Pathway to reduced GHGs
 - Pathway to potable H₂O supplies

- Demonstrated synthesis of skeletal Al₂O₃ substrate, subsequent ferrite ALD nanocoating and "hercynite" thermochemical cycling to split water at 1160°C,
- H2A analysis independently reviewed by TIAX, the DOE contractor for these comparative assessments,
- In the process of constructing an automated system to carry out continuous redox cycling

- ALD materials remain active for up to 30 water spitting cycles with no sign of deactivation after initial aggregation
- ALD thin films are ~ 100X more active than conventionally produced bulk ferrites
- "Hercynite" route potentially has significant advantages in terms
 of reduced reduction temperature and larger operating window
- H2A economics assessment by outside reviewer indicates a positive outcome if technology can be demonstrated
- Key is materials maintaining thin active layer supporting fast redox cycling; focus is materials development and demonstrated stability
- Will demonstrate the "hercynite cycle" in one reaction tube onsun at the NREL HFSF

Acknowledgements

7 Peer-reviewed Scientific Papers (2010/2011) 2 U.S. Patent Filings (2010)

Supplemental Slides

Approach - Free Energy Minimization Theoretical Limit (P = 0.001 MPa)

Operating "Sweet Spot"

ALD CoFe₂O₄ /ZrO2 Thermally Reduced

- ZrO₂ observed by Raman after thermal treatment (sample sinters; confirmed by BET)
- Nonetheless, material remains active after 25 cycles with no observed deactivation

Total Solar Heat Input Required without Heat Integration

 $NiFe_2O_4 + 0.67 ZrO_2 \rightarrow MeO (Fe^{2+}+Fe^{3+}+Ni^{2+}) + 0.67 ZrO_2 + \frac{1}{2}x O_2$

MeO (Fe²⁺+Fe³⁺+Ni²⁺) + 0.67 ZrO₂ + x H₂O \rightarrow NiFe₂O₄ + 0.67 ZrO₂ + x H₂

Oxidation Temperature	800°C	900°	1,000°C	1,100°C		
Moles H ₂ Produced	0.50	0.49	0.46	0.41		
Solar Energy Required (GWhr/yr)						
Overall Heat of Reaction	1,837	1,892	1,993	2,231		
Sensible Heat Required	1,520	1,520	1,311	1,141		
Total Solar Energy Required	3,582	3,412	3,304	3,372		

CO₂ Splitting with nano Al₂O₃ Powder Support

