

Semiconductor Materials for Photoelectrolysis

DOE Hydrogen Program Annual Merit Review

John A. Turner, Todd G. Deutsch

Project ID: PD035

May 12, 2011

This presentation does not contain any proprietary, confidential, or otherwise restricted information NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

- Project start date: 1991
- Project end date: 10/2011*
- Percent complete: 98%

Budget

- Total project funding
 - DOE share: \$11M
- Funding received in FY10: \$1100k**
- Funding for FY11: \$1100k**

* Project continuation and direction determined annually by DOE
** Includes UNLV and SU support

Barriers

- Barriers addressed
 - Y. Materials Efficiency.
 - Z. Materials Durability.
 - AB. Bulk Materials Synthesis.
 - AC. Device Configuration Designs.

Partners

- Interactions/collaborations
 - Los Alamos National Laboratory
 - Lawrence Livermore National Lab
 - University of Nevada Las Vegas (UNLV)
 - Colorado School of Mines
 - University of Louisville
 - University of Hawaii
 - Stanford University (SU)
 - Program production solicitation
 - MVSystems, Inc.
 - Small Business Innovation Research
 - Synkera Technologies, Inc.
 - Physical Optics Corporation

Objectives/Relevance

- The objective of this work is to discover and characterize a semiconductor material set or device configuration that (i) splits water into hydrogen and oxygen spontaneously upon illumination, (ii) has a solar-to-hydrogen efficiency of at least 5% with a clear pathway to a 10% water splitting system, (iii) exhibits the possibility of 1000 hrs stability under solar conditions and (iv) can be adapted to high volume manufacturing techniques.
- The main focus of our work this past year has been to develop and optimize state-of-the-art materials that we have identified as promising for meeting DOE's near-term efficiency and durability targets.

Table 3.1.10. Technical Targets: Photoelectrochemical Hydrogen Production ^a							
Characteristics	Units	2003 Status	2006 Status	2013 Target	2018 Target ^b		
Usable semiconductor bandgap ^c	e∨	2.8	2.8	2.3	2.0		
Chemical conversion process efficiency (EC) ^d	%	4	4	10	12		
Plant solar-to-hydrogen efficiency (STH) *	%	not available	not available	8	10		
Plant durability ¹	hr	not available	not available	1000	5000		
NATIONAL RENEWABLE ENERGY LABORATORY			L		3		

Material Challenges (the big three)

Characteristics for an Ideal Photoelectrochemical Hydrogen Production Material

Efficiency – band gap (E_g) must be at least 1.6-1.7 eV, but not over 2.2 eV; must have high photon to electron conversion efficiency

Material Durability – semiconductor must be stable in aqueous solution

Energetics – band edges must straddle H₂O redox potentials (Grand Challenge)

All must be satisfied <u>simultaneously</u>.

Approach: New Materials Discovery

Break down the large set of possible materials into two general categories

Non-Oxides

- III-V materials have the highest solar conversion efficiency of any semiconductor material (GaInP₂/GaAs tandem >12% solar-to-hydrogen)
 - Direct transition band gap, couple μm's of material, not 100's of μm
 - Large range of available band gaps (0.7eV 3.4 eV)
 - Stability an issue nitrides show promise for increased lifetime (Barriers Y & Z)
 - Band-edge mismatch with known materials tandems an answer (Barrier AC)
- I-III-VI materials offer high photon conversion efficiency and possible lowcost manufacturing–Cu(In,Ga,AI)(S,Se,Te)₂
 - Synthesis procedures for desired band gap unknown (Barrier AB)
 - Tandem on Si p/n, requires low-temp synthesis
- Other thin-film materials with good characteristics
 - a-Si/a-SiC: low-cost synthesis, stability (Barrier AB)

Mixed Metal Oxides

- Theory-Density Functional Theory (DFT) calculations to identity promising candidates
- Synthesis and characterization
- Cu, W, Bi, Sb based ternary or multinary oxides

Approach: Engineering Known Materials

Pt Counter

Electrode

Enhancing durability of a high efficiency system through material engineering

GaInP₂/GaAs tandem

- Metal Organic Chemical Vapor Deposition (MOCVD) synthesis
- Only demonstrated system that exceeds 10% solar-to-hydrogen target
 - 12.4% with Pt-black counter electrode
 - Greater efficiency with RuO₂ CE (Raising the bar!)
- Prone to corrosion
 - Unknown mechanism
 - Understanding pathway is nontrivial task
 - Fundamental need to identify and decipher corrosion in order to develop countermeasures
- Ideal candidate for corrosion studies
 - Single crystal surface
 - Easier to observe surface/changes
 - Easier to model and understand
 - Can tolerate efficiency losses due to protective treatment and still meet 10% target
- Dilute nitrides (1% N in GaPN, GaInPN) have improved stability in III-V PEC systems
 JPCB, 2006, 1⁴
 - Nitride in bulk lowers conversion efficiency
 - Nitride on surface offers protection

NATIONAL RENEWABLE ENERGY LABORATORY

e improved JPCB, 2006, 110, p.25297. JES, 2008, 155:9, p.B903.

0,

H,O

Au Contact

Courtesy of DOE/NREL,

Credit – David Parsons

p-GaAs

GaAs

Tunnel Junction

Η,

H,O

MOCVD

reactor

Approach: Engineering Known Materials

Partner with specialists with unique expertise and resources

Surface Validation Team

- Partner with UNLV (Heske) (PD051)
 - XPS, XAS, XES, IPES, UPS, AFM
 - Snapshots of surface pre-, intermediate, post-exposure
 - Identify common features of and conditions that lead to corrosion
 - Future: XAS & XES in-situ?
- Partner with LLNL (Ogitsu) (PD058)
 - Molecular dynamics simulations
 - Model surfaces for mechanistic understanding of corrosion
 - Calculate XAS and XES spectra to correlate experimental result with surface/near surface compositions

Goals

- 1. Understand PEC corrosion in III-V's, simplest (model) system to understand
- 2. Use understanding of corrosion initiation sequence to develop solution
- 3. Apply lessons learned to other inexpensive systems (polycrystalline thin-film, amorphous)

Efficiency benchmarking

- Simulated sunlight
 - Semiconductor (PV) reference cells calibrated to AM1.5 G
 - Different band gaps
 - Adjust lamp (tungsten, xenon) intensity until short-circuit matches calibrated value
 - Matches above E_g integrated intensity, not distribution
 - Difficult to accurately simulate solar spectrum for multiple junctions
- Outdoor measurements
 - Solar Radiation Research Laboratory
 - 60-second interval direct, diffuse, global intensity
 - Spectral distribution
- Gaseous product detection/analysis
 - Developing gas chromatography for quantitative and qualitative analysis http://www.nrel.gov/midc/srrl_bms/

Durability benchmarking

Controlled static conditions

- Long-term continuous testing (indoor)
 - Stable lamp output
 - Galvanostatic or potentiostatic
 - $\circ~$ Zero bias is ideal condition
 - 24, 100, 500 hrs
- Potential for outdoor real-world (variable) conditions
- Solution analysis by ICP-MS
 - Detect and quantify dissolved semiconductor components
- Sample post-mortem
 - Morphological characterization (interference scope, SEM, AFM)
 - Spectroscopic chemical characterization (XPS, IPES, AES, SIMS, XAS, XES)
 NREL/UNLV
- In-situ spectroscopy (XAS, XES) with UNLV in nascent stages

Improved efficiency of standard bearer

GaInP₂/GaAs Tandem Cells

- Metal Organic Chemical Vapor Deposition synthesis
 Science, 1998, 280, 425.
- 12.4% Solar to hydrogen efficiency (STH)
 - With Pt-black counter electrode
 - More active RuO₂ improves efficiency

Outdoor Measurements

New results demonstrate potential for 16.3% STH

Light (only) Driven Water Splitting

Video

Protection strategies for high-efficiency III-V photoelectrodes

Electrochemical nitridation of p-GalnP₂

- Surface protected when run for 24 hours in pH1 (NH₄)₂SO₄
- XPS found NH₃ on surface
- XPS depth profiles
 - Unprotected surface was indium enriched and Ga deficient
 - Sample run in (NH₄)₂SO₄ had surface similar to as-grown (bulk)

Ion bombardment nitridation of p-GaInP₂

- Prevented decline in photocurrent as compared to untreated sample run for 24 hours
- 45-second bombardment led to reduced amount of Ga and In found in durability solution (by ICP-MS) (right)
- Plasma nitridation of p-GalnP₂
 - Hydrogen and nitrogen plasma of surface
 - Preliminary data looks promising

p-GalnP₂ Durability Solution Analysis (ICP-MS) ■ Gallium 24 hours, -10mA/cm², AM1.5G, 0.5M H₂SO₄ ■ Indium

New materials development with potential for high efficiency and durability

- In_xGa_{1-x}N: III-V nitride materials (Los Alamos)
- LANL synthesized (MBE) full range of In:Ga compositions
- n-InGaN (previously)
 - stable single junction (non-tandem) material capable of water splitting
- p-InGaN with 2.2eV band gap (on sapphire)
- Developing and optimizing contacts, goal is conductive substrates

Initial testing (open-circuit potential, photocurrent) demonstrated

Low photocurrents due to poor carrier collection Ag, In

1 µm p-InGaN Ϋ →

GaN

Amorphous materials with potential for low-cost high volume manufacturing

- Hybrid tandem PV(a-Si)/PEC(a-SiC) thin-film devices
- MVSystems Inc. designs and synthesizes samples, PEC characterizations performed by NREL
- p-type photocathode materials
- Good stability over 300-hours at low current density (-1mA/cm²) in pH2 buffer (right, above)

- EDS of "A" detects only Si, O, Na (glass) •
- Area "B" composed of Si, C, O (semiconductor)
- Capable of unbiased water splitting
 - -1.3 mA/cm² under simulated AM1.5 G
 - 1.6% solar-to-hydrogen efficiency •
 - Room for improvement (3-5%)

See talk PD053 for more detailed results and progress

before testing

Efficient thin film chalcopyrite materials based on [Cu(In,Ga,AI)(S,Se,Te)₂]

- CuAlTe₂ films synthesized by thermal evaporation in glove box
 - Direct transition band gap in visible region
 - EDS detected oxygen contamination
 - DFT predicts oxygen kills hole transport (right)
 - Unstable in PEC environment
 - Not viable as synthesized

(a) and (b), co-evaporated (c) alternated layers of single elements. Films (b) and (c) underwent 450 °C post annealing for about 1 hour in vacuum

Direct (vertical in band diagram) transition is preferred because it is more efficient, requires less material Degree of band curvature directly relates to carrier effective mass (mobility) and a flat band structure indicates poor mobility and likely a poor material

DFT calculated band structures for (1) $Cu_4AI_4Te_8$ and (2) $Cu_4AI_4Te_7O$

Theoretical screening of metal oxides semiconductors for photoelectrochemical hydrogen production

Oxide PEC (or PV) material is a potential game-changer for solar conversion

- Use theory to predict electronic (band) structures of unexplored materials
 - Calculate band gap and spectra
 - Calculate carrier mobility and band edge position (wrt vacuum)
- Synthesize promising materials
- Characterize
- Iterate with theory group

http://kinglightchem.en.made-in-china.con

Discovery feedback loop

HEOR

PEC

NATIONAL RENEWABLE ENERGY LABORATORY

Theoretical screening of metal oxide materials

DFT calculations (at NREL) of absorption in TiO_2

- Want to reduce band gap and enhance absorption
- N 2p band lowers band gap
- Increasing N leads to reduced h⁺ effective mass and better mobilities
- DFT has difficulty predicting actual band gap (TiO₂ E_g =3.2eV), however, trends follow prediction

Calculated generalized gradient approximations (GGA) optical absorption spectra (above) for pure $TiO_2(1)$ and (Ta, N) co–incorporated TiO_2 with (2) 3.1%, (3) 12.5%, and (4) 25% of O replaced by N

See poster PD052

Theoretical screening of metal oxide materials

DFT calculations of conduction band minima (CBM) and valence band maxima (VBM) $\mathrm{TiO}_{\mathrm{2}}$

- Want to reduce band gap
- Need to shift CBM up (to be higher than H⁺/H₂ reduction half-reaction potential)
- Full band structures needed to determine absorption and carrier mobility

Calculated GGA band offsets (at the Γ point) for TiO₂ and TiO₂ alloyed with various donor-acceptor combinations in the low-concentration regime. The CBM of pure TiO₂ is set to 0 as the reference and the band gap is corrected using a scissor operator

See poster PD052

NREL synthesis of metal oxide alloy thin films

- Synthesized BiVO₄ by co-evaporation
- XRD showed monoclinic phase (good)
- Higher temp led to porous and nanostructured films
- Characterized BiVO₄ synthesized by coevaporation
- Fairly low n-type photocurrents observed in 1:1 Bi:V film
- Increasing the Bi:V ratio led to compensated (both p and n) behavior (bad)

SEM of monoclinic BiVO₄ after annealing at (a) 280°C for 20 minutes (b) 325°C for 1 hour

Chopped light I-V curves of BiVO₄ (left) with Bi:V = 1:1 and (right) Bi:V = 1.1:1 in pH7 1M Na₂SO₄

PEC Standards group

- Multiple year project on developing and publishing methods and standards for reporting (efficiency defined)
 - Contributors from NREL, DOE, Stanford University, University of Hawaii, UC Santa Barbara, University of Louisville, University of Tokyo and Australian Nuclear Science and Technology Organization International
 - Huyen Dinh (NREL) facilitated and presented results and process at
 - SPIE Optics & Photonics Conference, San Diego, CA, August 2010
 - Spring MRS Meeting, San Francisco, CA, April 2011

- Published abbreviated Review paper in Journal of Materials Research
 - January 2010
- Currently seeking feedback from broader community on sharepoint site
 - National and International reviewers
 - Goal is to incorporate reviewers' suggestions, modify documents, and publish
- Considering venue for publication of lengthy report in a technical report or book.

http://www2.eere.energy.gov/hydrogenandfuelcells/pec_standards_review.html

Accomplishment of Program Milestones

Milestone	Due date	Status
Complete, with LLNL and UNLV, the collaborative work plan for the III-V materials systems "Surface Validation Study" which combines the ab-initio molecular dynamics theory with advanced synthesis and spectroscopic characterization techniques for developing corrosion mitigation schemes for achieving >100 hour operational durability in III-V materials systems capable of >10% STH conversion efficiency. (leading to DOE long-term targets of 10% STH efficiency and 5000 hour durability.)	1/15/11	Completed
Complete absorption, PEC efficiency and stability characterizations of nanostructured molybdenum disulfide and tungsten disulfide PEC photocatalysts with demonstrated quantum-confined bandgaps in the 1.2eV to 1.8eV range.	4/15/11	Completed
Complete experiments on PEC photoelectrodes made from InGaN grown on conductive substrates to determine durability benchmarked against a 100 hour operational lifetime target.	9/1/11	On-track
Complete initial spectroscopic studies with UNLV on III-V materials systems as part of the collaborative "Surface Validation Study". Use results to design corrosion mitigation schemes for achieving >100 hour operational durability in III-V materials systems capable of >10% STH conversion efficiency.	9/30/11	On-track

To date, all program milestones have either been met or are on-track for on-time completion.

Collaborations

Partners (extensive collaboration with all)

- University of Nevada Las Vegas
 - Samples characterized (aged) at NREL and sent to Heske group for X-ray spectroscopic characterization both at UNLV and the Advance Light Source to identify corrosion intermediates and products
 - Key partner in surface validation project (PD051)
- Lawrence Livermore National Laboratory
 - Ogitsu group uses molecular dynamic simulations and theoretical calculations coupled with observations from UNLV analysis to elucidate corrosion mechanism
 - Key partner in surface validation project (PD058)
- Colorado School of Mines
 - Graduate and undergraduate research associates; electron microscopy and XPS user facilities; sample treatments and exchange
- University of Colorado
 - Undergraduate research associates
- University of Hawaii
 - CuGaSe₂, and RuO₂ from Hawaii for Pt catalyst studies; WO₃ from Hawaii for dual photoelectrode testing; cooperative PEC characterization; sample exchange and validation (PD053)
- Stanford University
 - Jaramillo group- subcontract on quantum confined nanostructured transition metal dichalcogenides (PD033); overlapping undergraduate research associates

Collaborations

Partners (extensive collaboration with all)

- University of Louisville
 - Sunkara group- ALD of TiO₂ on GaInP₂
- Los Alamos National Laboratory
 - Todd Williamson synthesizes InGaN samples
- Small Business Innovation Research
 - Synkera Technologies, Inc. (Industry)
 - We provide PEC characterization of novel electrode structures and materials obtained from our collaborator (PD062)
 - Physical Optics Corp. (Industry)
 - We provide logistical support, consulting, and PEC characterization of untested materials obtained from our collaborator (PD061)
- Program production solicitation
 - MVSystems, Inc. (Industry)
 - We provide characterization and durability analysis of a-SiC:H obtained from our collaborator (PD053)

Proposed Future Work

- Investigate MBE grown p-InGaN on conductive substrates
 - p-type for cathodic protection
 - Conductive substrates for improved efficiency
- Work with surface validation team partners (UNLV, LLNL) to test, evaluate, and understand corrosion mechanism on III-V materials and develop protection strategies
- Evaluate protective coatings and treatments for proven highefficiency materials that suffer from instability
 - Thin coatings by ALD
 - Electrochemical nitridation
 - Plasma nitridation
 - Ion bombardment nitridation

- Characterize emerging polycrystalline thin-films for stability and efficiency
 - Cu₂ZnSnS₄
 - CuGaSe₂
- Synthesis and characterization of oxide materials
 - Cu-Ti-O system
 - High-alloy content co-doped TiO₂
- Outdoor testing of dual photoelectrode configurations
 - Si, GalnP₂, CuGaSe₂ photocathodes
 - WO₃, Fe₂O₃, BiVO₄ photoanodes

Summary

- Improved overall water splitting efficiency of world-record holder by using more active oxygen evolution counter electrode (RuO₂)
- Developed potential protective treatments for high-efficiency III-V photoelectrodes (nitridation)
- Synthesized and characterized metal oxide semiconductors (BiVO₄) and calculated optical and electronic properties of co-doped TiO₂ that we plan to make
- Provided advice and characterization services to three industrial partners
- Continued to establish standardized measurement and reporting practices for PEC materials

Summary

- A viable PEC water splitting system requires a unique material that satisfies several specific requirements
 - No known material is suitable
 - Incremental progress has been made enhancing stability and efficiency
- New materials must be synthesized and characterized
 - Guided by rational theory, synthesis, characterization feedback
 - Not going to meet DOE technical targets with slight modifications of the usual (oxide) suspects
- Primary focus is finding a working material; secondary concern is developing a highthroughput/low-cost synthesis route

Acknowledgements

- Adam Welch- NREL
 - RuO₂ synthesis, GaInP₂ tandem efficiency, interference microscopy, SEM, a-SiC testing, videography, figure generation
- James Young- NREL
 - InGaN characterization
- Heli Wang NREL
 - GalnP₂ electrochemical nitridation
- Avery E. Lindeman- Harvard University (intern)
 - GalnP₂ ion bombardment nitridation
- Yanfa Yan- NREL
 - Metal oxide theory & synthesis
- Todd Williamson- Los Alamos National Lab
 - InGaN synthesis

Technical Back-Up Slides

Tandem Cell Durability

- - Failure due to gaping hole, likely an intrinsic defect
- Two electrode J-V shows decline in light-limited photocurrent under reverse bias but an initial improvement in short-circuit current density (J_{sc})

Oxygen Catalysts for Optimized System

measurement using
the same tandem cell
as the photocathode,
comparing a platinum
black counter electrode
to a ruthenium-oxide
coated platinum
counter electrode. The
cell was illuminated at
AM1.5 G, and the
electrolyte was fresh
0.5M sulfuric acid with
2g/L of Zonyl FSN-100
as surfactant