

Biological Systems for Hydrogen Photoproduction

2011 Annual Merit Review and Peer Evaluation Meeting

Maria L. Ghirardi, Pl National Renewable Energy Laboratory

Project end Date: 10/2011

Project continuation and direction determined annually by DOE

Project ID # PD037

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

Project start date: FY00

Project end date: 10/21/2011*

Percent complete: 80%

*Project continuation and direction determined annually by DOE

Budget

Total project funding: \$9,200K Funding received in FY10: \$600K

Funding allocated for FY11: \$865K

Barriers

Production barriers addressed

- Rate of H_2 production (AH)
- Continuity of H_2 production (AI)
- Feedstock cost in an integrated system (AT)

Partners

Drs. Anatoly Tsygankov and Sergey Kosourov, Institute of Basic Biological Problems, RAS, Pushchino, Russia

Dr. Michael Flickinger, North Carolina State University (unfunded)

Dr. Eric Johnson, Johns Hopkins University

Drs. Iftach Yacoby and Shuguang Zhang,

MIT (unfunded)

Objectives/Relevance

General: Develop photobiological and integrated photobiological/fermentative systems for large-scale H₂ production.

- Task 1: Address the O₂-sensitivity of hydrogenases and competition with the CO₂ fixation pathway, which either limit or prevent continuity of H₂ photoproduction under aerobic, high solar-to-hydrogen (STH) conditions.
- Task 2: Utilize a limited STH H₂-producing method (sulfur deprivation) as a platform to address other factors limiting commercial algal H₂ photoproduction.
- **Task 3:** Integrate photobiological and fermentative systems in different configurations for less costly H₂ production in the short term.

Objectives/Relevance

Parameters	Current Status	2013 Targets	Maximum Potential
Duration of continuous			
photoproduction			
 Aerobic, high STH (O₂-tolerant) 	0	30 min	12 hours
 Aerobic, limited STH (S-deprivation) 	10 days		indefinite
• Anaerobic, limited STH (S-deprivation)	90 days		indefinite
O_2 tolerance (half-life in air)			
 Oxidized conditions 	4 min		
Reduced conditions	40 min		
Cost (\$/kg H ₂)			
 Aerobic, high STH (O₂-tolerant) 			\$2.99
• Anaerobic, limited STH (S-deprivation)			\$6.02
 Integrated (photo + fermentative) 			\$3.21
	•	•	

Project Milestones

	Milestone	Due Date	Status
Task 1			
FY10 3.3.6 (carried over to FY11)	Measure the oxygen sensitivity of hydrogenase activity in <i>C. reinhardtii</i> transformants expressing an active Cal	03/11	Completed
FY11 3.3.2	Submit data on <i>in vitro</i> Fd/H ₂ ase fusion with MIT	12/10	Completed
Task 2	Milestone	Due date	Status
FY10 3.3.7	Test immobilized ATPase mutants under sulfur- deprived conditions	08/10	Completed
FY11 3.3.3	Demonstrate successful induction of a gene behind a chloroplast inducible promoter	02/11	Completed
FY11 3.3.4	Examine the effect of PEI and/or Ca ²⁺ on alginate film stability and culture productivity	02/11	Completed
	Test different gas-to-liquid (or solid) ratios in immobilized algal cell reactors and achieve a 3-fold increase in hydrogen production rates from a photobiological system. DOE CPS Agreement Milestone 45590.	3/11	Completed
FY11 3.3.5	Demonstrate successful characterization of at least two atpE mutants	06/11	In progress
Task 3	Milestone	Due date	Status
FY10 3.3.8 (carried over to FY11)	Determine the carbon mass balance, and H ₂ production rates and yields of the scaled-up fermentative system	03/11	In progress
FY11 3.3.6	Determine the efficiency of H ₂ photoproduction by S- deprived, photoautotrophic cultures	06/11	In progress

Task 1 – O₂ Sensitivity/Rate of Hydrogenases Objectives, Approaches, and Collaborations

Objectives:

- (1) Develop and optimize *aerobic, high-STH* photobiological systems for the production of H_2 from water by engineering a H_2 -producing catalyst ([FeFe]-hydrogenase) that has an extended half-life following exposure to O_2 .
- (2) Develop and test hydrogenase constructs to direct more photosynthetic electron transport to hydrogenase rather than to FNR and CO_2 fixation to increase rates of H₂ production under aerobic conditions.

Task 1 – O₂ Sensitivity/Rate of Hydrogenases Objectives, Approaches, and Collaborations

Approaches:

- (1) Computational simulations to identify energy barriers for O₂ access to the hydrogenase catalytic site
- (2) Use simulations to guide site-directed and random methods to generate mutants with higher O_2 tolerance.
- (3) Introduce a more O_2 -tolerant bacterial hydrogenase into algae.
- (4) Express hydrogenase-ferredoxin fusions to increase electron flux to the hydrogenase (informal collaboration with Iftach Yacoby and Shuguang Zhang, MIT).

Tasks 1.1 and 1.2 – O₂ Sensitivity of Hydrogenases Accomplishments

Task 1.1

Computational simulations identified differences in the geometries and energies of the gas diffusion barriers protecting the H-cluster in two [FeFe]-hydrogenases with a 1,000-fold difference in the level of O_2 sensitivity.

Task 1.2

To change the geometries and increase the energy of accessibility, the regions around the diffusion barriers (not the barrier residues *per se*) are being randomized. These will be expressed and screened in a new high-throughput technique.

Task 1.3 – O₂ Sensitivity of Hydrogenases Accomplishments

(a) Constructed plasmids for constitutive or inducible expression of the more O₂-tolerant clostridial Ca1 hydrogenase in Chlamydomonas.

(b) Introduced codon-optimized Ca1 gene in Chlamydomonas (confirmed by PCR) and detected transcription of the gene by RT-PCR.

Task 1.3 – O₂ Sensitivity of Hydrogenase Accomplishments

- (c) Activity data are ambiguous because of the native algal enzyme background.
- (d) Introduce the Ca1 gene in a double hydrogenase mutant (with no native activity) developed under Office of Science (BES and BER) funding. In progress

FY10 MILESTONE 3.3.6 (carried over to FY11):

Measure the oxygen sensitivity of hydrogenase activity in *Chlamydomonas reinhardtii* transformants expressing an active Ca1 hydrogenase. *Completed.*

Task 1.4 – Rate of Hydrogenase Accomplishments and Milestones

INFORMAL COLLABORATION WITH MIT

Created fusions between hydrogenase and ferredoxin to improve photosynthetic reductant flux to the hydrogenase.

FY11 MILESTONE 3.3.2

Publish data on in vitro Fd/H2ase fusion with MIT – manuscript submitted. *Completed.*

Task 1 – O₂ Sensitivity/Rate of Hydrogenase Future Work

- Random mutagenesis: We will screen new transformants for activity and then measure O₂ tolerance using tools developed from previous funding periods.
- 2. Expression of Clostridial hydrogenase in *Chlamydomonas*: Confirm the expression of the Ca1 hydrogenase in the double knock-out hydrogenase mutant; detect the expression of the Ca1 protein with antibodies; complete FY10 milestone 3.3.6; demonstrate that the recombinant Ca1 hydrogenase is linked to photosynthesis in positive transformants.
- **3. Hydrogenase-ferredoxin fusions**: The fusion protein will be introduced into *C. reinhardtii* hydrogenase mutant for an *in vivo* evaluation. NREL will continue to collaborate with MIT under a subcontract with the Office of Science.

If the hydrogenase engineering Task 1.1 does not yield results during the remainder of the FY11 funding period, we propose to take advantage of efforts with the Clostridial hydrogenase (Task 1.2), hydrogenase-ferredoxin fusion (Task 1.3), ATP synthase mutants (Task 2) and truncated antenna mutants from Prof. Melis, UCB, and genetically construct a single strain and test H_2 production under sulfur-deprived conditions.

Task 2 – Sulfur-Deprivation Platform Objectives, Approaches, and Collaborations

Objectives:

- Further optimize and utilize an anaerobic, limited-STH working platform to study biochemical and engineering factors that affect H₂ photoproduction by biological organisms.
- Focus on the effect of an inactive, leaky ATP synthase on the rates.

Approaches:

- Task 2.1: Optimize the photobioreactor operating parameters (RAS).
- **Task 2.2**: Generate *inducible* ATP synthase mutants (JHU) and test them with the immobilized system (RAS).

Collaborators: Johns Hopkins University (JHU), the Institute of Basic Biological Problems, Russian Academy of Sciences (RAS).

Task 2.1 – Sulfur-Deprivation Platform Accomplishments and Milestones

1. Investigate the effects of different gas-to-liquid ratios in immobilized cell

Increases in the gas phase yielded the highest reported rate of H₂ photoproduction by sulfurdeprived algae in suspension (**12.5 mmoles mg Chl**⁻¹ **h**⁻¹), and they may not be fully optimized. The rates of cultures immobilized on alginate saturate at about **10 mmoles mg Chl**⁻¹ **h**⁻¹.

FY11 DOE MILESTONE:

Test different gas-to-liquid (or solid) ratios in suspension and immobilized algal cell reactors and achieve a 3-fold increase in hydrogen production rates from a photobiological system. *Completed.*

Task 2.1 – Sulfur-Deprivation Platform Accomplishments and Milestones

2. Determine the effect of H_2 gas pressure on H_2 photoproduction rates by suspension cultures of sulfur-deprived *C. reinhardtii*.

The results confirm the inhibitory effect of H_2 on the reaction and stress the need for gas purging from the photobioreactor to achieve maximum rates of H_2 photoproduction.

These results and the previous DOE milestone results imply that the cost of gas purging and gas separation must be balanced with the increase in the rates of H_2 production in order to achieve the most economical system.

Task 2.1 – Sulfur-Deprivation Platform Accomplishments and Milestones

Polyethyleneimine were added to increase the mechanical stability of alginate films.

 $CaCl_2$ is needed to induce polymerization of alginate. However, $CaCl_2 > 5mM$ concentration inhibits H₂ photoproduction rates and does not enhance mechanical stability (not shown).

FY11 3.3.4 MILESTONE:

Examine the effect of PEI and/or Ca2+ on alginate film stability and culture productivity. *Completed.*

0.3 Control 0.25 0.1 % PEI Hydrogen, mol / m² 0.2 % PEI 0.3 % PEI 0.2 0.5 % PEI 0.15 0.1 0.05 0 200 400 600 800 1000 1200 1400 1600 Time, h

An increase in the PEI concentration inhibits H_2 photoproduction but increases the mechanical stability of the film, up to 0.3 % PEI (more cycles). The highest total H_2 yield was obtained in films pre-treated with 0.1 % PEI (0.41 mol / m²).

Task 2.2 – Sulfur-Deprivation Platform Accomplishments

1. Generate and test ATP synthase mutants with altered ATP synthase; introduce the mutation into an algal strain containing non-mutated enzymes to allow for normal growth under aerobic conditions with a carbon source.

Growth curves for wild-type and different ATP synthase mutants in the light on TAP medium (not selective).

2. Design a plasmid for expression of the altered ATP synthase, using the orange fluorescent protein (mKO) as a marker behind either the atpA constitutive promoter or the psbD inducible promoter. In progress

Task 2 – Sulfur-Deprivation Platform Milestones

FY10 MILESTONE 3.3.7

Test immobilized ATPase mutants under sulfurdeprived conditions.

Completed.

FY11 MILESTONE 3.3.3

Demonstrate successful induction of a gene behind a chloroplast inducible promoter.

In progress.

FY11 MILESTONE 3.3.4

Demonstrate successful characterization of at least two atpE mutants.

In progress.

Task 2 – Sulfur-Deprivation Platform Future Work

- 1. Operational parameters using alginate-immobilized algae: Perform long-term experiments using cycles of sulfate/phosphate re-addition; run the photobioreactors under continuous flow of medium with added sulfate/phosphate.
- Continue to design and test the performance of Chlamydomonas inducible transformants carrying a leaky ATP synthase: Transformants will be tested for growth, photosynthetic activity, and H₂ production capability.

Task 3 – Integrated Systems Objectives

Objective: Integrate photobiological with fermentative organisms to more efficiently utilize the solar spectrum and the substrates/products from each reaction for H_2 production.

Task 3 – Integrated Systems Approaches and Collaborations

Approaches:

- Integrate fermentative H₂ production from potato waste to photosynthetic H₂ production by anaerobic, purple non-sulfur bacteria (RAS).
- Integrate sulfur-deprived, alginate-immobilized algal H₂ production to fermentative H₂ production by an anaerobic consortium isolated from wastewater sludge, using information from potato waste approach.

Collaborator: Institute of Basic Biological Problems, RAS

Task 3 – Integrated Systems Accomplishments and Milestones

1. Design, test and optimize a two-chamber reactor for integrated fermentation of potato waste with photobiological non-oxygenic H₂ production.

A membrane was installed between the two chambers, connecting them through holes for diffusion of organic acids.

Issues encountered: low diffusion of VFAs limits photoproduction of H_2 ; improper sealing of the membrane did not prevent contamination; inhibition of photosynthetic bacterial growth by factors present in the fermentative effluent; nitrogen sources for photosynthetic bacteria need to be tightly controlled.

2. Independent successive cultivations with pH correction and addition of N_2 gas. Tested different amounts of feedstock, different dilutions of fermentative effluent before transfer to photobioreactor, and a new strain of *Rhodobacter capsulatus*.

Yields of 55% (based on 12 moles H₂/glucose) were obtained with 2% starch (from potato waste), 75-95% dilution of fermentative effluent before feeding the *R. capsulatus* strain N7.

Task 3 – Integrated Systems Accomplishments and Milestones

 Set up new photobioreactors and determine the carbon mass balance, H₂ production rates and yields of the integrated system using algal biomass (FY10 Milestone 3.3.8).

In progress, after delayed installation of new photobioreactors.

Task 3 – Integrated Systems Future Work

- 1. Finish up research on the potato-waste system.
- 2. Scale up and further optimize fermentation of suspended and immobilized algal biomass by the fermentative consortium, using new Sartorius fermenters; meet FY10 Milestone 3.3.8.
- 3. Revisit the use of photoautotrophic cultivation conditions for sulfur-deprived cultures, aimed at increasing H_2 yields and decreasing cost by eliminating organic carbon substrate; meet FY11 Milestone 3.3.6).

Summary

Task 1:

- Identified the distance between H-cluster-binding residues as the next target for mutagenesis; created random mutants and started screening for activity.
- Successfully introduced the more O₂-tolerant Ca1 hydrogenase gene in wild-type Chlamydomonas; biphasic kinetics of O₂ inactivation were observed under certain conditions, demonstrating Ca1 activity in combination with native hydrogenase activity; shifted Chlamydomonas host to a double hydrogenase knock-out strain without native activity, generated new transformants, and are in the process of analyzing these transformants.
- Created fusions between ferredoxin and hydrogenase and submitted a manuscript for publication with MIT.

Task 2:

- Observed that an increase in the photobioreactor's gas phase increases rates of H₂ photoproduction by up to a factor of 3; H₂ accumulation in the headspace, on the other hand, leads to decreased rates; results highlight the need for gas purging. Demonstrated optimal levels of PEI and Ca⁺² that result in enhanced film stability.
- Continued to optimize plasmids for inducible expression of an altered ATP synthase subunit in Chlamydomonas to allow increased rates of electron transport to the hydrogenase.

Task 3:

- Finalized the optimization of an integrated fermentative/photosynthetic reactor system using potato waste as feedstock, achieving yields of 55% conversion from glucose to H₂.
- Initiated studies of an integrated system using algal biomass as feedstock.