

Electrochemical Hydrogen Compressor

Ludwig Lipp FuelCell Energy, Inc. May 10, 2011

Project ID #PD048

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 7/15/10
- Project end date: 7/14/13
- Percent complete: 27%

Budget

- Total project funding
 - DOE share: \$1993k
 - Contractor share: \$629k
- Funding received in FY10: \$200k
- Funding for FY11: \$500k

Barriers

- Barriers addressed for gaseous hydrogen compression:
 - Improve reliability
 - Eliminate contamination
 - Improve energy efficiency
 - Reduce cost

Partners

- Collaborations: Sustainable Innovations, LLC
- Project lead: FuelCell Energy

Relevance

Impact of EHC:

- Increases reliability/availability over current mechanical compressors
- Ensures "no possibility of lubricant contamination" (No moving parts) → Fuel Cell Quality H₂
- Increases Compression Efficiency to 95% (DOE 2015 Target)
- Potentially reduces cost of H₂ delivery to <\$1/gge (DOE Long Term Target)

Leader in Stationary Fuel Cell Power Plants

Leading fuel cell developer for over 40 years

- MCFC, SOFC, PAFC and PEM (up to 2.8 MW size products)
- Over 700 million kWh of clean power produced world-wide (>50 installations)
- Renewable fuels: over two dozen power plants operating with ADG fuel
- Ultra-clean technology: CARB-2007 certified: Facilitates clean air permitting in California
- Internal reforming technology enables H₂ coproduction

Fuel Flexibility Experience

Westin at SFO Airport Nat Gas CHP

29 Palms Marine Corp Base Nat Gas Secure CHP

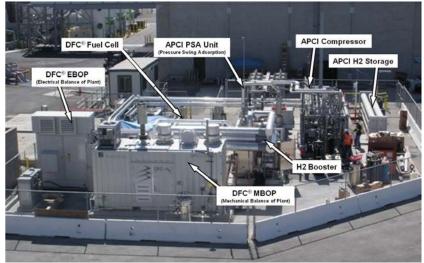
Santa Rita Jail, CA Nat Gas Fuel Cell and Solar Power

DFC Products are uniquely capable of operating on many fuels

Ford Paint Shop Paint Solvent Fume Power

Sierra Nevada Brewery Nat Gas and BioGas CHP

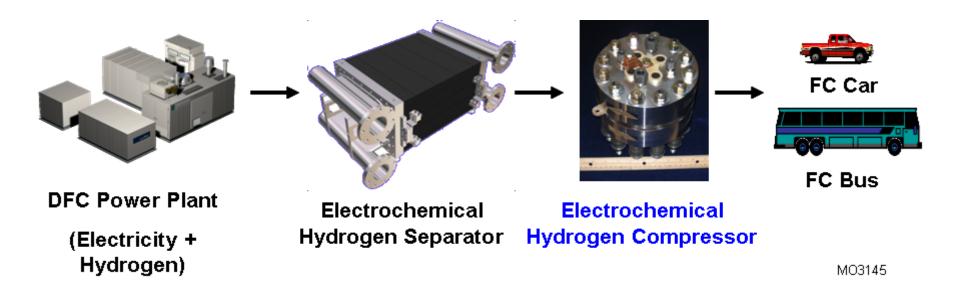
Pacific Missile Range Propane Secure CHP


Co-Production of Renewable Hydrogen at OCSD, CA

OCSD Site Demonstration

- October 2010 DFC-H₂ Start-up on Natural Gas
 - Co-production Efficiency (H₂ + Power) 54.2%
- November 2010 Mechanical Completion of Hydrogen Fueling Station
- February 2011 First Delivery of H₂ to Fueling Station
- March 2011 Initial Test Fills of Fuel Cell Vehicles

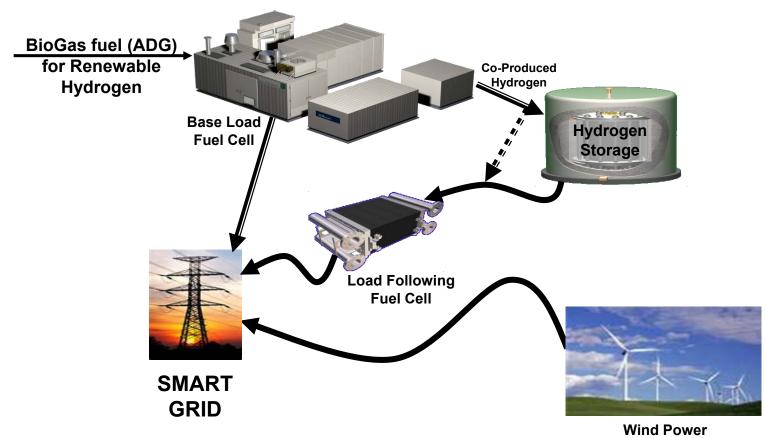
Hydrogen Energy Station


Hydrogen Fueling Station

FuelCell Energy

7

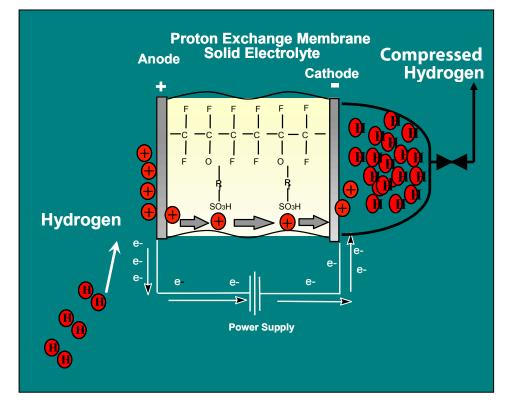
Enabling Technology for Hydrogen Co-production



Technologies for Hydrogen Infrastructure and Smart Grid

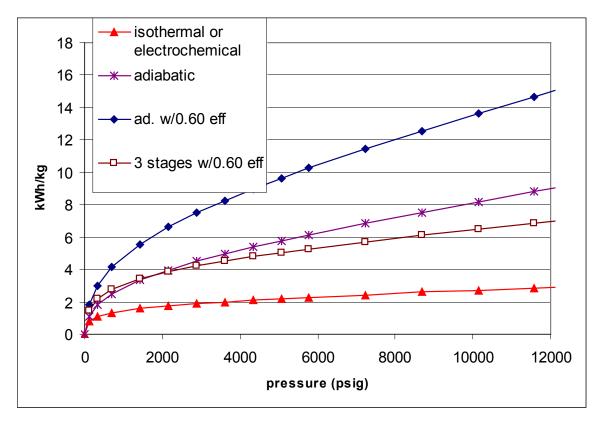
DFC-H2[®] Applications for the Smart Grid

Hydrogen as Energy Storage can Support Intermittent Wind Energy


Approach

- Use high-pressure electrolyzer experience for mechanically robust cell design
- Higher current density operation to minimize capital and operating costs
- Improved flow field design to increase H₂ recovery efficiency
- Simple system: Reduce capital cost by reducing catalyst loading and humidification requirements

Principle of Electrochemical Hydrogen Compressor



- Simple Operating Principle with No Moving Parts Solid State !
 - Use of Hydrogen Electrode for High Compression Efficiency

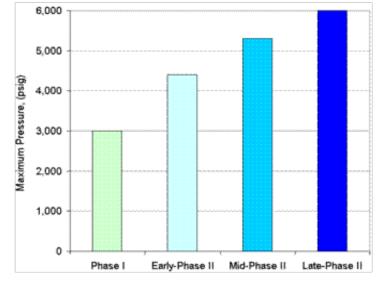
Calculated Compressor Performance Values

Electrochemical compression is by far the most efficient way to compress hydrogen

12

Approach to Achieving 12,000 psi Pressure Capability

- Design and Demonstrate Common Building Block (2,000 3,000 psi) for dual-use applications (industrial + fuel cell vehicles)
- Improve Performance of the building block (seals, creep, etc.) and implement lower cost fabrication processes
- Develop a Cascade System for 6,000 12,000 psi Capability



Technical Accomplishments and Progress – Previous Work

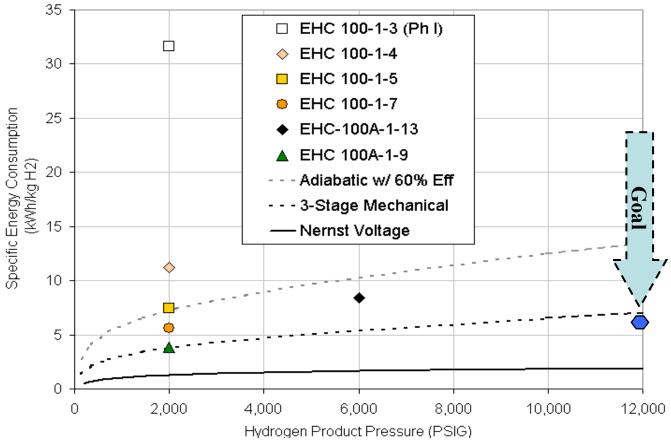
Baseline EHC Hardware Design

Progress in H₂ Compression Capability of EHC

2009 Hydrogen Program Annual Merit Review Award

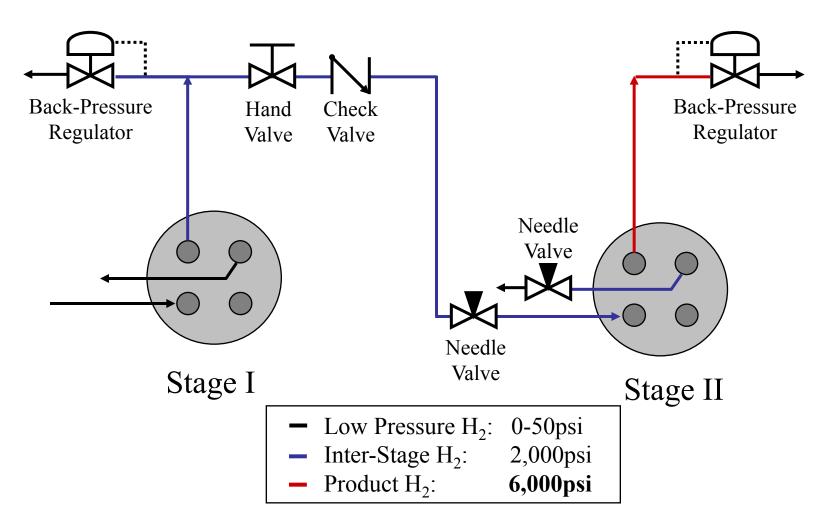
MO3292

Excellent Progress Made in EHC Cell Technology (DOE – Phase II – SBIR)


Achievements in EHC Technology Development

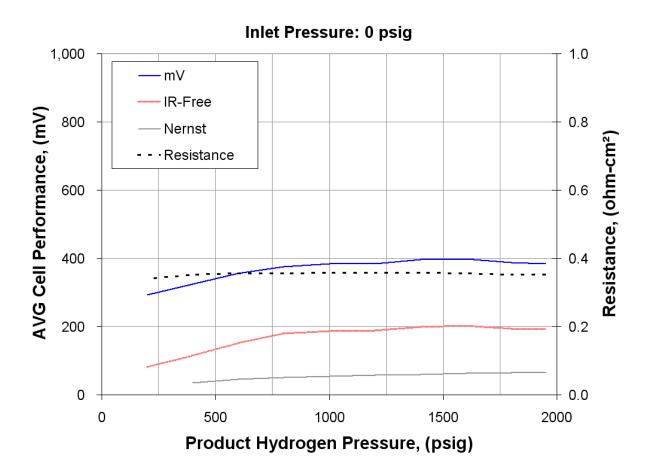
Parameter	Phase II Goals	Current Status
No. of Cells in Stack	10	10 ✓
Durability (single cell)	2,000 hrs	3,000 hrs √
Hydrogen Recovery Efficiency	95%	>95% ✓
Hydrogen Product Pressure	6,000 psi	6,000 psi ✓ single stage 6,000 psi ✓ 2-stage
Compression Ratio	300:1	300:1 ✓
Minimize Hydrogen Inlet Pressure	5 psig	<5 psig ✓
Pressure Cycling	≥20 cycles to 3,000 psi in 10-cell stack	20 cycles to 3,000 psi in 10-cell stack ✓
Hydrogen Flux	500 mA/cm ²	1,000 mA/cm ²

Reduction in the Energy Consumption of EHC



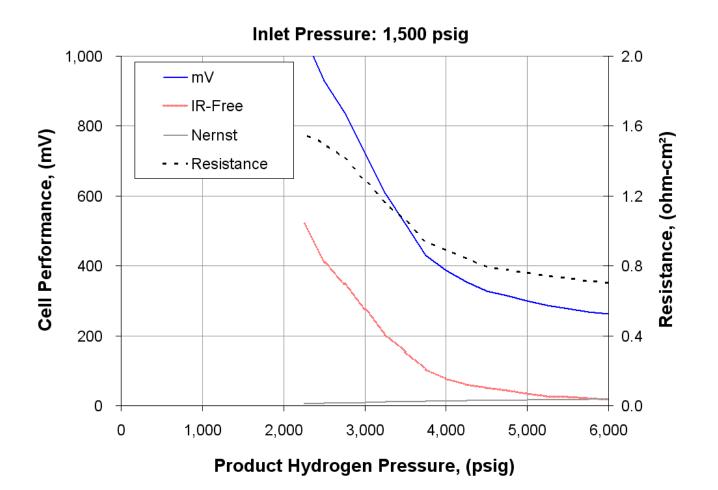
Over 80% reduction in energy consumption

2-Stage EHC System Concept



High level control strategy developed

Stage I: 2-Cell EHC Stack



- Stack runs very stable at 1,500 psi
 - Flat resistance curve

Stage II: 6,000 psi EHC Cell

Cell runs better at higher pressure

19

Collaborations

Prime

- FuelCell Energy, Inc.* (Industry):
 - Leading fuel cell developer for over 40 years

Subcontractor

- Sustainable Innovations, LLC^{*} (Industry):
 - Cell and stack design and fabrication
 - Scale-up design and fabrication
 - EHC stack cost estimates

* Within DOE H₂ Program


Proposed Future Work

- Fabricate and test four baseline cells screen 17 improvement ideas
- Validate baseline stack design (up to 5 cells) demonstrate 500 hr life at 2,000 - 3,000 psi
- Select promising advanced EHC cell design options
- Complete advanced EHC cell design review
- Fabricate cell hardware for advanced design (200 cm² active area)
- Design test facility for two-stage compression up to 12,000 psi

Scale-Up Plan to Reach 8 lb/day

22

Project Summary

Relevance: Provide highly efficient, reliable and cost-effective hydrogen compression (up to 6,000/12,000 psi)

Approach: Develop electrochemical compressor – solid state device **Technical Accomplishments:**

- Reduced Capital Cost by 50% (H₂ flux increased to 1,000 mA/cm²)
- Developed 2-stage EHC system concept
- Validated 2-stage EHC hardware feasibility at 2,000/6,000 psi level

Collaborations: Active partnership with industry (Sustainable Innovations) on materials, design and fabrication

Proposed Future Work: Scale-up cell design to 200 cm² active area to increase throughput and lower the cost

Acknowledgement

- FCE: Pinakin Patel, Ray Kopp, Jonathan Malwitz
- Sustainable Innovations, LLC: Trent Molter and team
- DOE: Monterey Gardiner, Scott Weil, Paul Bakke

