2011 DOE Hydrogen and Fuel Cells Program Review

Integrity of Steel Welds in High-Pressure Hydrogen Environment

Drs. Zhili Feng (P.I.), John Jy-An Wang, Fei Ren, Larry Anovitz, and Wei Zhang (Presenter)

Materials Science and Technology Division Oak Ridge National Laboratory

May 10, 2011

Project ID # PD049

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: Mar. 2004
- Project end date: Sep. 2012*
- Percent complete: 90%

Budget

- Total project funding
 - DOE share: \$1,327K
 - Contractor share: Not Applicable
- Funding received in FY10: \$150K
- Funding for FY11: \$150K

* Project continuation and direction determined annually by DOE

Barriers

- Barriers addressed
 - D. High Capital Cost and Hydrogen Embrittlement of Pipelines
 - K. Safety, Codes and Standards, Permitting

Partners

- Project lead
 - ORNL (Oak Ridge National Laboratory)
 - Interactions / collaborations
 - Savannah River National Lab
 - University of Illinois
 - Praxair
 - MegaStir Technologies
 - ➢ ESAB
 - DOT and ASME

Details in Slide 20

Relevance – Hydrogen Delivery

Gaseous hydrogen delivery pathway

Figure adapted from Hydrogen Delivery, in Multi-Year Research, Development and Demonstration Plan, 2007.

- 1,200 miles of H₂ pipelines currently operating in the U.S.
- New pipelines under construction by major gas suppliers
- Current joining technology for steel pipes:
 - Creating microstructure that is susceptible to hydrogen embrittlement
 - Labor-intensive and costly

Ref.: Hydrogen Delivery, Multi-Year Plan, 2007.

Relevance – Project Objectives

- Overarching goal of project:
 - Improve resistance to hydrogen embrittlement (HE) in pipeline steel welds
 - Reduce welding-related construction cost
- Specific objectives during the current project year:
 - Validate the fracture toughness testing methodology for pipeline steel welds in high-pressure hydrogen environment
 - Demonstrate the effectiveness of friction stir welding for improving resistance of pipeline steel welds to hydrogen embrittlement

4 Managed by UT-Battelle for the U.S. Department of Energy

Integrity of Steel Welds in High-Pressure Hydrogen

Overall Technical Approach

- Understand H₂ transport behavior in base metal steels and welds
 - Measurement and modeling of H₂ permeation and diffusion under high pressure (up to 5,000 psi)
 - Effect of steel composition, microstructure, and sample surface conditions
- Generate weld property data for fracture-mechanics based pipeline design
 - Tensile test for relative ranking of weld microstructure susceptibility to hydrogen embrittlement
 - Spiral notch torsion test for determining fracture toughness degradation in steel welds
- Develop welding technology for steel pipelines for H₂ delivery
 - Solid-state friction stir welding for improved mechanical property and reduced cost

Focuses of the current project year

Technical Accomplishments and Progress

- Quantitative understanding of hydrogen embrittlement in pipeline steel welds based on *in-situ* testing methods:
 - Spiral notch torsion test (SNTT) for fracture toughness
 - Multi-notch tension test for microstructure susceptibility
- Friction stir welding for improving resistance of steel welds to hydrogen embrittlement
- Improving capability of testing equipment
 - A hydrogen charging system capable of steadily supplying or varying H_2 pressure up to 10,000 psi

Validation of *in-situ* Fracture Toughness Testing in High-Pressure H₂

Testing matrix

- Fracture toughness testing method
 - Spiral notch torsion test
- Testing specimens
 - Base metal of AISI 4340 high-strength steel
 - Simulated heat-affected zone (HAZ) of 4340 steel weld
- Testing environments:
 - Room temperature
 - Gaseous hydrogen at 1,900 psi pressure
 - Air

Microstructure and Hardness in 4340 Base Steel & Weld Heat-Affected Zone

Martensitic microstructure observed at the specimen center (Left: base metal; Right: simulated weld HAZ)

- Base metal prepared by:
 - Heat treated at 850 °C for one hour and oil-quenched to room temperature
- Simulated weld HAZ prepared using a Gleeble[®] thermal-mechanical system:
 - Heated to 950 °C at a rate of 10 °C/s, held at 950 °C for 5 s, and quenched to room temperature using helium gas
 - Temperature profiles mimicking those encountered in welding

Managed by UT-Battelle for the U.S. Department of Energ

Baseline Fracture Toughness Data in Air using SNTT

During testing, a torque is applied at the ends of the sample subjecting the entire sample to pure shear forces.

Before testing, both specimens were prepared by cyclic fatigue to introduce sharp crack-tips.

Finite Element Analysis for Determining **Toughness by Converting Measured Data**

Model geometry (left) and mesh

- Special meshing
 - **Rings of elements centered on the** crack tip line to facilitate the contour integral calculation
 - **Element: 20-node quadratic brick**
- Mechanical properties
 - Young's modulus = 205 GPa
 - Poisson's ratio = 0.29

Fatigue

precrack

Two Zones observed on Fracture Surface of Sample tested in Air

Fracture Toughness Testing in High-Pressure Hydrogen

Thermo-couple

Wires for strain gages

H₂ port for charging / discharging

Load frame for torsion

In the test, the entire load frame with pre-stressed specimen is placed inside the autoclave.

Stain Gage Readings for Fracture when Testing in Hydrogen

 Initial rise and eventual stabilization in strain gage readings due to the interaction of H₂ and strain gage

Cracked specimen after exposure to hydrogen (pressure = 1,900 psi)

13 Managed by UT-Battelle for the U.S. Department of Energy

Fracture Surface of Sample tested in 1,900 psi Hydrogen (Preliminary Result)

Simulated weld HAZ

Ongoing effort to characterize the fracture surface for signature of hydrogen embrittlement using high-magnification scanning electron microscopy (SEM)

Degradation of Fracture Toughness when exposed to High-Pressure H₂

Testing in ambient air

• Effect of hydrogen embrittlement:

- Base metal: 36% drop in fracture toughness in H₂
- Simulated weld HAZ: 39% drop in fracture toughness H₂

Notes:

- Specimens tested in air were prepared by cyclic fatigue to introduce sharp crack tips.
- Specimens tested in H₂ were not cyclic fatigued.
- Effort is ongoing to test specimens with fatigue precrack in H₂.

Consistency with Literature Data

Chemistry of AISI 4340 steel used in the current study (by wt%)				
С	Mn	Р	S	Si
0.30	0.55	0.015	0.015	0.25
Cr	Мо	Cu	Ni	AI
1.01	0.22	0.13	0.11	0.025

Figure adapted from N. Bandyopadhyay, et al., 1983.

	Literature data	Current study
Heat treatment	Tempering for one hour in vacuum in the range 100 to 525 °C after quenching	No tempering after quenching
Material	Base metal only	Base metal and simulated weld heat- affected zone
H ₂ pressure	16 psi	1,900 psi

Unique Property of Friction Stir Welded X65 Steel Pipe

17 Managed by UT-Battelle for the U.S. Department of Energy COAK RIDGE National Laboratory

Improving Capability of Testing Equipment: High-Pressure H₂ Charging System

National Laboratory

pressure up to 10,000 psi

Proposed Future Work

- Remaining of the current project year
 - Complete the assembly of hydrogen charging system that is capable of supplying pressure up to 10,000 psi
 - > Acquire baseline arc weld of X65 steel pipe
 - Demonstrate the improved hydrogen embrittlement resistance attained in friction stir welded X65 steel pipe
- Potential follow-on work in FY2012 and beyond
 - Apply the unique testing methods and apparatus (tension and torsion) to study hydrogen embrittlement in other important engineering materials

Collaborations and Interactions

Savannah River National Lab	Hydrogen permeation	
University of Illinois	Mechanism of hydrogen embrittlement	
Praxair (Industry partner)	Degradation of mechanical properties due to hydrogen embrittlement	
MegaStir Technologies (Industry partner)	Friction stir welding	
ESAB (Industry partner)	Friction stir welding	
DOT Pipeline and Hazardous Materials Safety Administration (PHMSA)	<i>Pipeline integrity for alternative fuels transmission</i>	
ASME B31.13 (Codes and Standards)	Hydrogen piping and pipelines	

Project Summary

Relevance:	Improve fundamental understanding of weld performance necessary for ensuring safety and reliability of hydrogen transmission pipelines	
Approach:	Develop and apply unique weld property testing techniques and advanced joining process for pipeline steels	
Technical Accomplishments and Progress in the current Project Year:	 Demonstrated the in-situ fracture toughness testing method for steel welds exposed to high-pressure hydrogen Several ongoing efforts (see future research below) 	
Technology Transfer / Collaborations	 Close partnership with national lab, university and industry Active interaction with DOT and ASME Presentations and publications 	
Proposed Future Research:	 Demonstrate the improved hydrogen embrittlement resistance in friction stir welded X65 steel pipe Complete the assembly of high-pressure hydrogen charging system 	

Acknowledgements

- **Project Sponsor:** DOE Fuel Cell Technologies Program
- Sara Dillich, Monterey Gardiner and Scott Weil, DOE
- Dave Stinton (ORNL)
- Alan Frederick, Hanbing Xu, Jian Chen and Steve Pawel (ORNL)
- Zhe Chen (Michigan State University)

