

Characterization of Materials for Photoelectrochemical Hydrogen Production (PEC)

Clemens Heske Department of Chemistry, University of Nevada, Las Vegas May 12, 2011 Project ID # PD051

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 5/6/08
- Project end date: 9/30/11
- Percent complete: 83%

Budget

- Total project funding
 - DOE share: \$390k
 - Contractor share: \$97.5k
- Funding received in FY10: \$100k
- Funding for FY11:
 \$90k

Barriers

- Barriers addressed
 - H. System Efficiency
 - Lifetime
 - Indirectly: G. Capital Cost

Partners

- Interactions/collaborations: DOE EERE PEC WG (NREL, LLNL, HNEI, UCSB, Stanford, MVSystems), Berkeley Lab, HZB Berlin, U Würzburg
- Project lead: C. Heske, UNLV

Activity Overview: Electronic and Chemical Properties of PEC candidate materials (Relevance)

To enhance understanding of PEC materials and interfaces and promote break-through discoveries:

- Utilize cutting-edge soft x-ray and electron spectroscopy characterization
- Develop and utilize novel characterization approaches (e.g., *in-situ*)
- Provide characterization support for surface validation
- Address materials performance, materials lifetime, and capital costs through intense collaboration within (and outside of) the PEC WG

Research Activity (Approach)

- Overarching goal: compile experimental information about the electronic and chemical properties of the candidate materials studied within the PEC WG
 - Determine status-quo (includes: find unexpected findings)
 - Propose modifications (composition, process, ...) to partners
 - Monitor impact of implemented modifications
- Use a world-wide unique "tool chest" of experimental techniques
- Address all technical barriers related to electronic and chemical properties of the various candidate materials, in particular:
 - Bulk and surface band gaps
 - Energy-level alignment
 - Chemical stability
 - Impact of alloying/doping

Collaborations

(Relevance, Approach, & Collaborations)

- Collaborations are at the heart of our activities:
 - Supply of samples
 - Most important: supply of open questions, issues, challenges
 - Interactive interpretation of results
 - Joint discussion of potential modifications
 - Involvement in implementing modifications
- Great collaboration partners in the PEC WG:
 - NREL: (Ga,In)P₂
 - UC Santa Barbara: Fe_2O_3 et al.
 - Stanford U: MoS₂
 - LLNL: Theory ((Ga,In)P₂, liquid/solid interfaces)
 - U Hawaii/HNEI: WO₃, W(X)O(Y)₃, Cu(In,Ga)(S,Se)₂

UV/Soft X-ray Spectroscopies (Approach)

Plus: Atomic Force Microscopy 7

High dynamic range XPS, UPS, Auger, IPES

High resolution XPS, UPS, Auger

Scanning Probe Microscope

Sample preparation and distribution

SALSA: Solid And Liquid Spectroscopic Analysis at Beamline 8.0, Advanced Light Source, LBNL

Technical Challenges (the big three)

Material Characteristics for Photoelectrochemical Water Splitting

After John Turner, NREL

Efficiency – the bulk band gap (E_g) must be at least 1.6-1.7 eV, but not over 2.2 eV

Material Durability – semiconductor must be stable in aqueous solution

Energetics – the surface/interface band edges must be optimized with respect to the H₂O redox potentials

All must be satisfied simultaneously

Requirements for PEC Materials (Relevance)

- Chemical stability
- Optimized bulk band gap for photon absorption
- Optimized band edge positions at the relevant surfaces

(Ga,In)_xP_y thin films for PEC

With:

Todd Deutsch and John Turner

National Renewable Energy Laboratory

Tadashi Ogitsu and Brandon Wood Lawrence Livermore National Laboratory

David Prendergast

Lawrence Berkeley National Laboratory

For more details, please see PD035 and PD058

Motivation: compile data for (Ga,In)_xP_y similar to previous results on WO₃ and WO₃:Mo

Electronic surface structure of as-received GaInP₂ surface ("dirty")

- Surface-sensitive measurements are powerful, but are also influenced by surface adsorbates
- HOMO-LUMO energy separation of surface adsorbates ("band gap"): ~ 3.3 eV
- Compare: UV-Vis and photocurrent spectroscopy (NREL): ~ 1.8 eV
- Work function of surface adsorbates: ~ 4.5 eV
- Current work: optimize surface cleaning procedures to minimize adsorbate influence

XES & XAS of InP, GaP, and GaInP₂ (Accomplishments)

XES & XAS of InP, GaP, and GaInP₂ (Accomplishments)

- Lower bound for electronic surface-near bulk band gap can be determined
 - Needs to take coreexciton and spin-orbit splitting (0.84 eV) into account
- Derived lower-bound band gaps:
 - InP: 2.6 eV (Lit: 1.34 eV)
 - GaP: 2.8 eV (Lit: 2.46 eV)
 - GalnP₂: 1.5 eV (1.75 eV)
- Needs theory (and cleaner samples) for better understanding

XES: Comparison of Theory and Experiment (Accompl.)

Theoretical spectra include matrix elements and were shifted to align with experiment

XES: Comparison of Theory and Experiment (Accompl.)

- Excellent agreement between theory and experiment for all three compounds (InP, GaP, GaInP₂)
- Further refinement necessary
- Will allow us to derive exact position of VBM by comparing experiment and theory
- Next step: comparison of XAS experiment and theory

Theoretical spectra include matrix elements and were shifted to align with experiment

Normalized Intensity (a.u.)

Atomic Force Microscopy (chemical stability) of a tested GalnP₂ surface (Accomplishments)

Sample	Treatment	Electrolyte
MJ247-3	-8mA/cm ² , 22 hrs, AM1.5G	0.1M HNO ₃ +0.5M NH ₄ NO ₃ w/ Zonyl FSN-100

Impact of Exposure to Electrolyte (Accomplishments)

• The exposed region is highly corrugated, whereas the unexposed region is flat and appears ordered

Impact of Exposure to Electrolyte (Accomplishments)

22

Comparison: Before/After Exposure (Accomplishments)

μm

Transition Region (Accomplishments)

Interface between the exposed and unexposed regions shows that surface roughness of the unexposed region is due to erosion, not the deposition of material onto the surface
 24

(Ga,In)_xP_y Summary (Accomplishments)

- First band gap determination experiments
 - Surfaces: need optimized surface cleaning
 - Bulk: XES/XAS derives 1.5 eV needs correlation with theory (where are the correct band edges?)
 - First comparison of XES theory and experiment yields <u>excellent</u> agreement
- First analysis of electrolyte exposure
 - Chemical changes (XPS)
 - Morphological changes (AFM)
 - Future: spectroscopy in-situ (XES/XAS)

MoS₂ nanomaterials for **PEC**

With:

Zhebo Chen and Tom Jaramillo

Stanford University

For more details, please see PD033

Optimized XES spectrometer in SALSA for S L_{2.3} XES (to allow *in-situ* spectroscopy) – MoS₂ reference

 Developed prototype liquid-solid interface cell for XES in SALSA (to allow *in-situ* spectroscopy) – Mo metal reference under 10 μm of H₂O

 Developed prototype liquid-solid interface cell for XES in SALSA (to allow *in-situ* spectroscopy) – Mo metal reference under 10 μm of H₂O

 Developed prototype liquid-solid interface cell for XES in SALSA (to allow *in-situ* spectroscopy) – Mo metal reference under 10 μm of H₂O

Electronic Structure of Fe₂O₃ Thin Films

With: A. Forman, A. Kleiman-Shwarsctein, and Eric McFarland

University of California, Santa Barbara

Sample Preparation (Approach)

"Real world" Film (UCSB)

x nm Fe Pt (150 nm) Ti (50 nm) Quartz wafer	Annealed in air • 700 C, 4 hr, 2 C/min	<pre>~2x nm Fe₂O₃ Pt (150 nm) Ti (50 nm) Quartz wafer</pre>		
Prototypical Films (UNLV)				
Fe Foil	Heated in partial O ₂ • 600 C, 90 seconds	FeO _x		
Ti Foil	Heated in partial O ₂ • 600 C, 3 minutes	TiO₂ 32		

Effect of calcination on thin Fe₂O₃ samples (FY 2010 Accomplishments)

- Ti and Pt are detected at the surface after calcination
- Pt peaks not seen in thicker calcined samples (not shown)

Electronic surface structure (Accomplishments)

Normalized Intensity (a.u.)

34

Electronic surface structure (Accomplishments)

Summary of Fe₂O₃ results (Accomplishments)

- Earlier findings: calcination modifies chemical surface structure, leading to Ti segregation; in thin films, Pt signals are observed at the surface
- Now: electronic structure at the surface
 - Favorable surface band gap
 - Redox-potentials are straddled, but only barely
- Clarification of "high-performance" character

Research Plan & Basis for Continuation of Research (Proposed Future Work)

- Continue the collaborations with our existing partners
 - (Ga,In)(P,N) with NREL and LLNL
 - WS_2 and MoS_2 with Stanford
 - WO_3 and $Cu(In,Ga)Se_2$ with HNEI
- Determine electronic and chemical properties of various PEC candidate materials (see list on collaboration slide) and answer as many questions as possible
- Study the impact of material modifications by the collaboration partners (e.g., alloying, doping, ...)
- Study material durability after exposure to a variety of ambient environments
- Find unexpected things (e.g., guest species)
- Depending on funding availability: *in-situ* studies

Overall Summary (Relevance)

- Approach allows unprecedented insight into the electronic and chemical structure of PEC candidate materials from within (and outside of) the DOE WG
- Portfolio of experimental techniques ranging from "standard" to "pushing the edge forward" (*in-situ* on the horizon)
- Requires close collaboration with synthesis groups, theory groups, and other characterization groups
- Results will be as good as the questions we ask!
- Addresses materials performance, lifetime, and cost directly or indirectly through collaboration partners
- Met all program milestones and delivered all deliverables of characterization data and analyses to program collaborators