

PEC Materials: Theory and Modeling

DOE AMR Yanfa Yan May 10, 2011 Project ID # PD052

PEC Materials: Theory and Modeling

Yanfa Yan, Wan-Jian Yin, Su-Huai Wei, Mowafak Al-Jassim, and John Turner

National Renewable Energy Laboratory, Golden, Colorado May 10, 2011 Project ID #

PD052

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date: 2007 for this task
- Project end date: Oct. 2011*
- Percent complete: 75%*

Budget

- Total project funding
 - Part of NREL PEC Program
- Funding received in FY10
 ~ \$ 120K
- Funding for FY11: ~ \$ 100K
 - *Project continuation and direction determined annually by DOE
- Note: Task with PD035- Turner

Barriers

- Barriers addressed
 - Y. Materials efficiency
 - Z. Materials durability
 - AB. Materials synthesis

Partners

- University of Hawaii Nicolas Gaillard
- University of California Eric McFarland
- University of Nevada Clemens Heske

PEC Working Group: Evaluating working directions Sharing and building-up knowledge Accelerating research progress

4

Objectives - Relevance

The main focus of the project is to:

- Understand the performance of current PEC materials
- Provide guidance and solution for performance improvement
- Design and discover new materials

and

 Provide theoretical basis for go/no-go decisions to DOE PEC H₂ projects.

Approach

- 1. Work closely with other DOE H₂ projects
- 2. Follow the PEC R&D feedback loop
- 3. Use state-of-the-art, first-principles, density-functional theory calculation, which can calculate important properties:
 - Band structure
 - Optical absorption
 - Defect and doping effects
 - Surface chemistry
 - Structural stability

R&D feedback loop

Previous Technical Accomplishments and Progress

Breaking symmetry by group-IIIA and group-IIIB alloys to enhance optical absorption of Cu delafossite

Optical absorption is enhanced by alloying Ga and In with Y

1. Rational band structure engineering of TiO₂ for improved PEC water splitting

Strategies

1. Charge balanced donor-acceptor alloying

Overcome solubility limit, reduce charged defects, improve materials quality

- 2. Using 4*d*, 5*d* TM acceptor Lift up the conduction band
- 3. Using higher *p*-orbital donors Raise the valence band
- 4. High concentration of the alloying elements Enhance optical absorption, improve hole mobility

Potential candidates as donor: Ta, Nb, W, Mo Isovalent impurities: Zr, Hf

Potential candidates as acceptor: N, C, P, Si, As Isovalent impurities: S, Se

Calculated (GGA) band structure

Sufficient foreign elements must be incorporated to enhance carrier mobilities

Calculated (GGA) absorption coefficient

Sufficient foreign elements must be incorporated to obtain good optical absorption

Possible donor-acceptor combinations

(donor, acceptor)

(2 donors, acceptor) (donor, 2 acceptors)

GGA + band gap correction at Γ point: low concentration

GGA + band gap correction at Γ point: high concentration

Good combinations

Low concentration:

(Mo, 2N), (W, 2N)

High concentration:

(Ta, N), (Nb, N), (2Ta, C), (2Nb, C)

Phys. Rev. B 82, 045106 (2010)

2. Superior doping properties of BiVO₄

Excellent optical absorption coefficient Good Valence band edge position

Good carrier mobility

Atomic Structure of BiVO₄

Na on Bi can lead to good p-type of BiVO₄

Ca and Sr doping can lead to good p-type of BiVO₄

Mo and W doping can lead to good n-type of BiVO₄

BiVO4 has superior doping properties -

It can be doped both good n-type and p-type

These excellent doping properties are required for PEC H_2 production application

Collaborations

- University of Hawaii: improving the performance of WO₃ and CGS PEC materials
- University of California: understanding the performance of Fe₂O₃
- University of Nevada: determining electronic structures of oxides
- MV System: understanding amorphous SiC materials.

Active collaborations continued via frequent conference calls and meetings during DOE quarterly working group meetings.

Proposed Future Work

- Continue to support the DOE Fuel Cell Technologies
 Program.
- Continue to provide understanding and direction to DOE PEC H₂ projects.
- Explore Cu-containing oxides as PEC material candidates that may lead to promising performance.
- Band structure engineering of BiVO₄ for PEC application.
- Develop strategies for engineering existing popular oxides.
- Explore electronic and optical properties of non-oxide PEC materials, such as nitrides and carbides.

Project Summary

Relevance: Provide advice to other DOE PEC H_2 projects and assist with understanding of performance.

Approach: Use first-principle density-functional theory.

Technical Accomplishments and Progress: Proposed strategies for band structure engineering of TiO_2 for improved PEC water splitting performance. Demonstrated superior doping properties of BiVO₄.

Collaborations: Active partner of University of Hawaii, University of California, University of Nevada, and MVSystems.

Future Work: Continue to support the DOE H₂ Program by exploring new materials.

Yanfa Yan 303-384-6456 yanfa.yan@nrel.gov