This presentation does not contain any proprietary, confidential, or otherwise restricted information.

the Energy to Lead

One Step Biomass Gas Reforming-Shift Separation Membrane Reactor

2011 DOE Hydrogen Program Review May 10, 2011

Michael Roberts Razima Souleimanova Bryan Morreale Mark Davis Brett Krueger Co-PI GTI Co-PI-presenter GTI National Energy Technology Laboratory Schott North America Wah Chang (an Allegheny Company)

Project ID PD070

Overview

Timeline

- Start: 02/01/2007
- End: 06/30/2013
- Percent complete: 50%

Budget

- Total project funding: \$3,076,186
 DOE share: Contractors share:
- Funding received in FY10: \$350,000
- Funding for FY11: \$350,000 planned

Barriers

- Hydrogen Production from Biomass Barriers
 - G. Efficiency of Gasification, Pyrolysis, and Reforming Technology
 - I. Impurities
 - N. Hydrogen Selectivity
 - O. Operating Temperature
 - P. Flux

DOE Technical Targets

- \$2-3/kg H₂ from biomass delivered target
- \$1.60/kg H₂ from biomass without delivery

\$2,396,949 \$679,237

Collaborations:

Partners

Arizona State University (Academic)- Ceramic membranes (completed their efforts 2008)

National Energy Technology Laboratory (Federal)-Metallic membranes

Schott North America Corporation (Industry)-Glass-ceramic membranes

Wah Chang Company (Industry) - Membrane module design

Relevance: Technical Targets: Dense Metallic Membranes for Hydrogen Separation and Purification^a

Performance Criteria	Units 2006 Status		2010 Target	2015 Target	
Flux Rate ^b	scfh/ft ²	>200	250	300	
Module Cost (+ membrane material) ^c	\$/ft ² of membrane	1,500	1,000	<500	
Durability ^d	hr	<8,760	26,280	>43,800	
Operating Capability ^e	psi	200	400	400-600	
Hydrogen Recovery	%	60	>80	>90	
Hydrogen Quality ^f	% of total (dry) gas	99.98	99.99	>99.99	

^A Based on membrane water-gas shift reactor with syngas.

- ^B Flux at 20 psi hydrogen partial pressure differential with a minimum permeate side total pressure of 15 psig, preferably >50 psi and 400°C.
- ^c Although the cost of Pd does not present a significant cost barrier due to the small amount used, the equipment and labor associated with depositing the material (Pd), welding the Pd support, rolling foils or drawing tubes account for the majority of membrane module costs. The \$1,500 cost status is based on emerging membrane manufacturing techniques achieved by our partners and is approximately \$500 below commercially available units used in the microelectronics industry.
- ^D Intervals between membrane replacements.
- ^E Delta P operating capability is application dependent. There are many applications that may only require 400 psi or less. For coal gasification 1000 psi is the target.
- F It is understood that the resultant hydrogen quality must meet the rigorous hydrogen quality requirements as described in Appendix C. These membranes are under development to achieve that quality. Membranes must also be tolerant to impurities.

This will be application specific. Common impurities include sulfur and carbon monoxide.

Relevance: Project Objectives

Long-term goal:

Determine the technical and economic feasibility of using the gasification membrane reactor to produce hydrogen from biomass

Short-term goal:

Evaluation of synthesized metallic and glass ceramic membranes to fabricate a module for testing with a bench scale gasifier

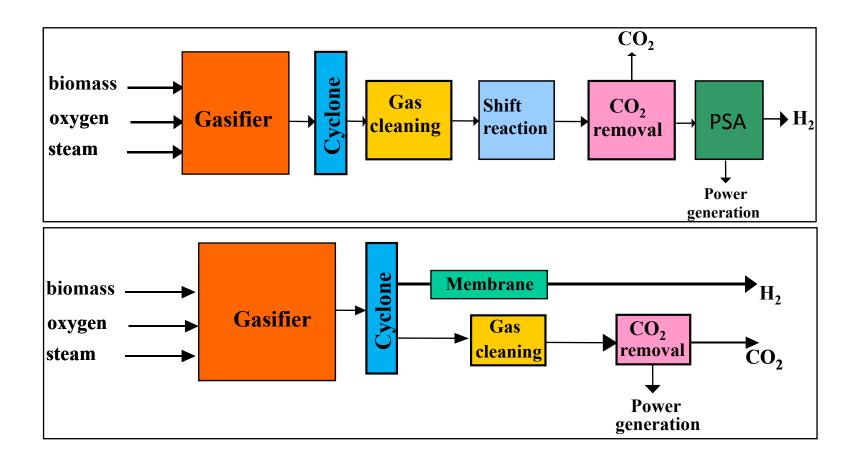
Approach: Scope of Work

Task 1. Membrane material development

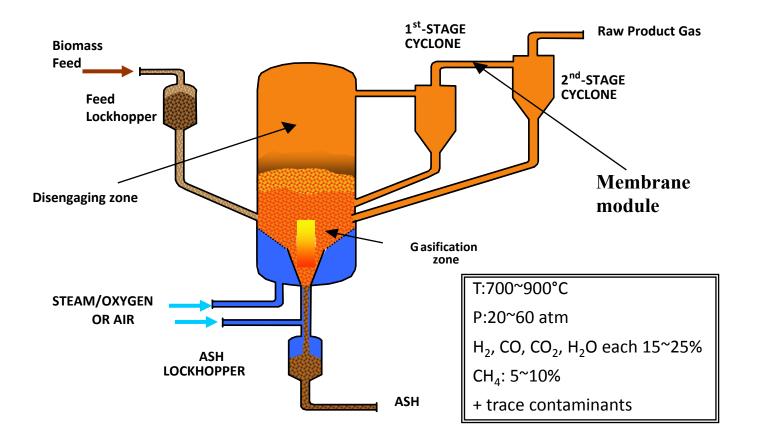
- 1.1 Ceramic material synthesis & testing
- 1.2 Metallic material synthesis & testing
- 1.3 Composite membrane synthesis & testing
- 1.6 Optimization of selected candidate membranes
- Task 2. Gasification membrane reactor process development and economic analysis
- Task 3. Bench-scale biomass gasifier modification
- Task 4. Integrated testing of initial membrane with gasifier
- 4.1 Design of membrane module configuration
- 4.2 Membrane module fabrication
- 4.3 Testing of bench-scale membrane reactor

Task 5. Integrated testing of best candidate membrane with gasifier

Task 6. Project Management and Reporting



Approach: Milestones


Task	Revised/		
	Planned	Completed	
1.4 Select Initial Candidate Membrane	3/15/08	6/30/08	
1.5 Select Best Candidate Membrane	12/30/11		
1.5 Develop Membrane with Flux of 125 SCFH/f	6/15/11		
2.0 Process Development & Econ Analy	sis 9/30/10	10/07/10*	
	6/30/12		
4.1 Membrane Module Design	6/30/10	9/17/10	
2.0 Integrated Testing with Bench Gasifi	er 6/30/12		

* Preliminary economic calculations indicate DOE Target can be met.

Approach: Conventional Hydrogen Production from Biomass Gasification and Biomass Gasifier with Close Coupled Membrane

Approach: GTI's Fluidized Bed Gasifier RENUGAS[®] Ideal for Membrane Gasification Reactor

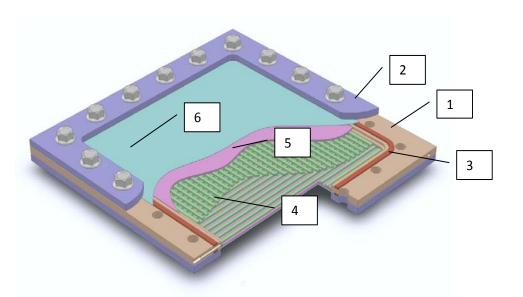
Approach: Potential Benefits of Membrane Reactor for Hydrogen Production from Biomass

• High H₂ production efficiency:

Thermodynamic analysis indicates potentially over 40% improvement in H₂ production efficiency over the current gasification technologies

Eliminate loss in PSA tail gas				
More CO shift	$H_2O+CO = CO_2 + H_2$			
Reform CH ₄	$CH_4 + H_2O = CO + 3H_2$			

Low cost:

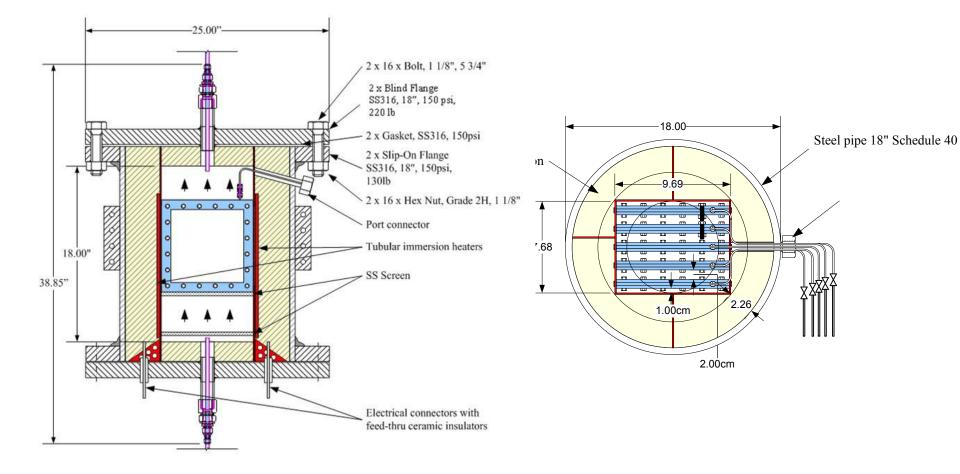

reduce/eliminate downstream processing steps

Clean product:

no further conditioning needed, pure hydrogen

- CO₂ sequestration ready: simplify CO₂ capture process
- Power co-generation: utilization of non-permeable syngas

Technical Accomplishments and Progress: Membrane Module Design



1-base plate2-clamping frame3-copper gasket4-slotted metal support5-porous support6-membrane

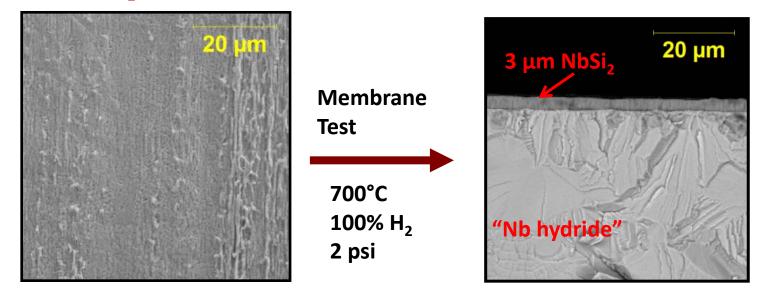
- Planar design
- Copper gaskets coated by silicon
 Hastelloy C-276 body, porous supports and additional mechanical support
- •Cement as intermetallic layer
- •Distance between channelsturbulent regime
- •An initial candidate- Pd₈₀Cu₂₀ foil
- •Review of membrane module design by Wah Chang
- •Potential Sites for Membrane Module: Auburn University and GTI's FFTF

Technical Accomplishments and Progress: Membrane Module Design- GTI and Wah Chang review

Technical Accomplishments and Progress: Metallic Membranes- GTI

	Advantages	Disadvantages
Pd-based membranes	Relatively high flux Catalytic activity for H ₂ dissociation	Cost Resistance to impurities issue
Non-Pd membrane	High potential for H ₂ flux Inexpensive	Poorly catalytic surface H ₂ embrittlement

Potential remedies

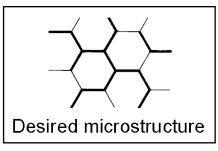

Engineered surface coatings Alloying

Permeability at T=800-850°C PdCu PdTa PdAg (Pd:60-100%) PdNi PdAu Pd-NiCu-Pd (Pd:0-55%) Pd-Co-Pd Pd-NiFeCuMo-Pd Pd-VNi-Pd Pd-PdTi-Pd Pd-Ta-Pd Pd-V-Pd

Technical Accomplishments and Progress: Membrane Performance in H₂ - NETL

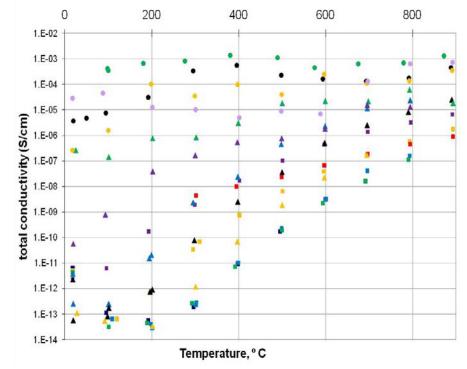
Test of concept

NbSi₂ on Nb


Result: Failed quickly due to formation of brittle Nb hydride, but silicide coating appears permeable to H_2

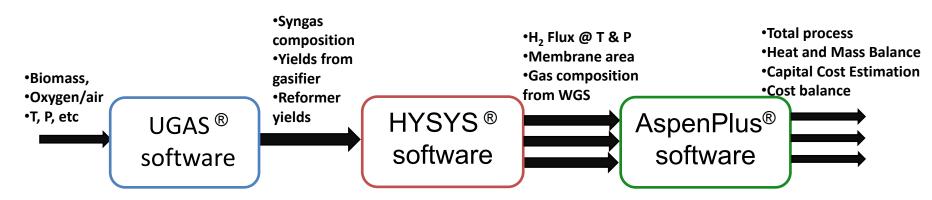
•Five new Pd-Cu ternary alloys have been fabricated

•Alloying elements selected for potential structural stabilizing effect and/or effect on surface characteristics

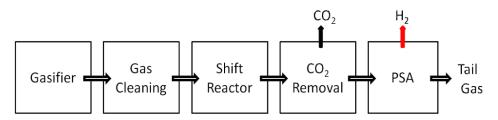

Note: Membrane testing has been on hold due to relocation of testing facilities to a new facility. Membrane testing is expected to restart by May 2011.

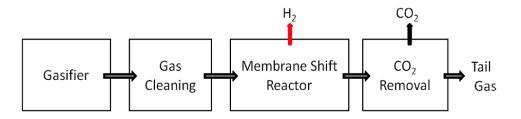
Technical Accomplishments and Progress: Metal-Glass-Ceramic Membranes- Schott

- Segregation of appropriate metals (e.g., Ag-Pd) along grain boundaries during high degrees of crystallization for selected compositions
- Combined ion-exchange (e.g., Ag-Pd) and heat treatment under a reducing atmosphere
- Co-sintering of glassy powder + metal (e.g., Ag-Pd) to produce a high metal content-containing glass-ceramic

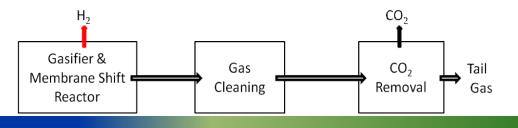

Membrane	Hydrogen permeation at 850°C, SCFH/FT ²	Electronic conductivity, S/cm at 600°C
Base1-1/3 Glass-no Pd	0	4 x 10 ⁻⁸
Base1-1/2 w/Pd Glass	0.02	4 x 10 ⁻⁹
Base1-1/2D w/Pd	0.25	7 x 10 ⁻⁷

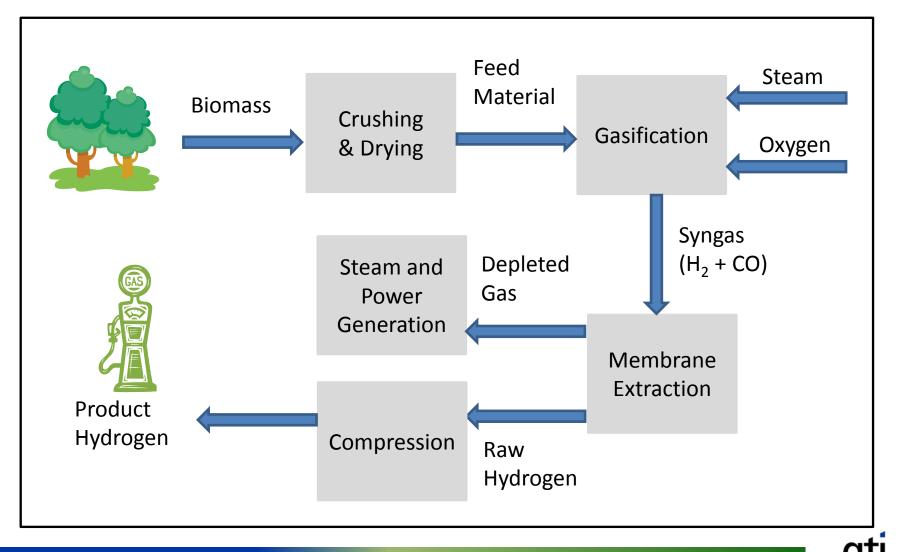
One Base Composition
Different Dopants
Different Processing Conditions

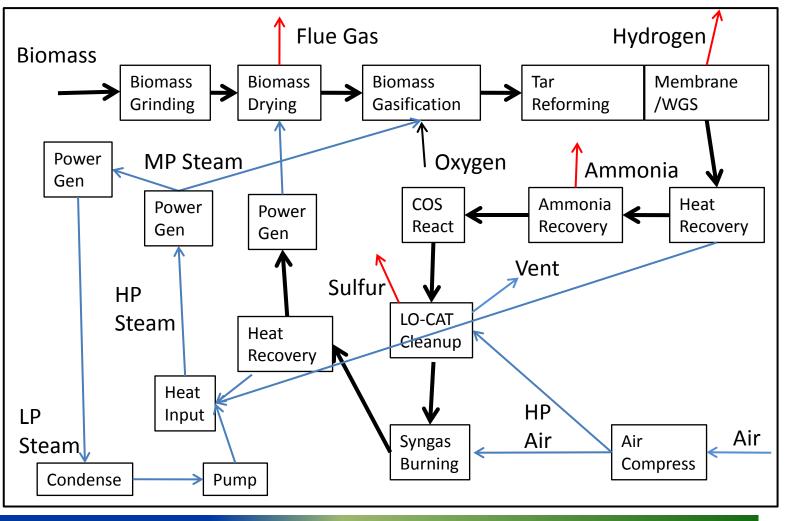

Technical Accomplishments and Progress: Process Optimization Strategy


- UGAS[®] Process Model
 - Yields from gasifier @ T & P
 - Reformer yields (removes heavy (tar) components and increases H₂ concentration.)
- Hysys[®] Model with Excel Spreadsheet
 - Determines flux @ T & P (5 equal-area zones)
 - Sizes membrane area for a fixed amount of H₂ recovery
 - Determines gas composition from WGS (partial pressure driving force)
- Aspen Plus[®] Model
 - Determines total process heat and material balance
 - Allows capital cost estimation from scaling
 - Allows operating cost balance steam and power generation from pinch analysis

Technical Accomplishments and Progress: Simplified Diagrams of Different Process Variations after Biomass Gasification


Conventional Hydrogen Production Process


Hydrogen Production using Closely-Coupled Membrane Process


Hydrogen Production using In-Situ Membrane Process

Technical Accomplishments and Progress: Process Simulation Basis

Technical Accomplishments and Progress: Process Flow Diagram

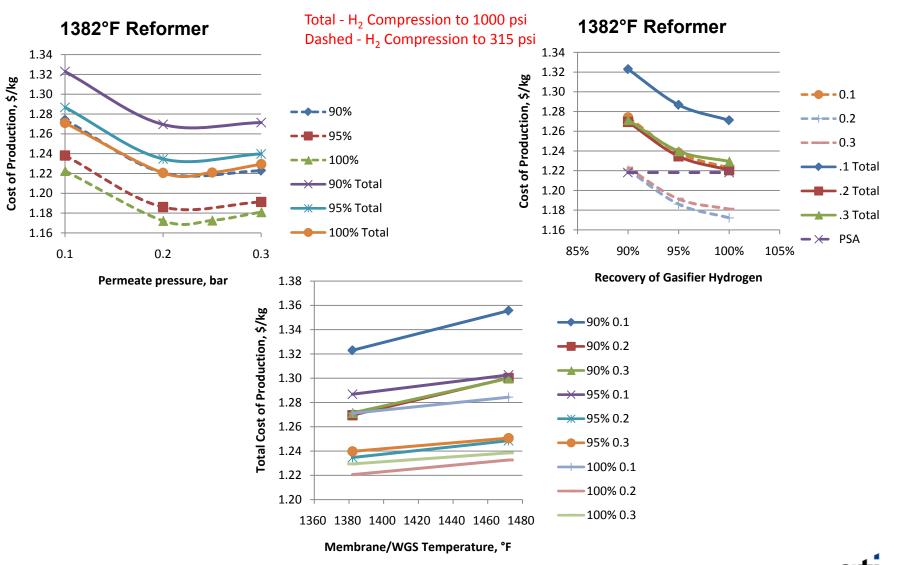
Technical Accomplishments and Progress: PSA and Closely-Coupled Membrane Cases

PSA case: P. Spath, A. Aden, T. Eggeman, M. Ringer, B. Wallace, and J. Jechura,

"Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier," NREL/TP-510-37408, May 2005

Closely-Coupled Membrane case:

Scaled from the Aspen model using economic bases from the PSA case: The size bases for flow rates and heat duties for these calculations - Goal Design process flow diagrams (Appendix D) The capital cost bases for the scaling calculations - Goal Design Summary of Individual Equipment Costs (Appendix I)


Technical Accomplishments and Progress: Preliminary Economic Analysis

	<u>\$/kg</u>		
	PSA Membrane		<u>mbrane</u>
<u>Case</u>		<u>6F</u>	<u>7F</u>
Gasify T		1472	1472
WGS T		1472	1382
Membrane thickness		5	5
Permeate p, bar		0.2	0.2
H2 Recovery	81%	100%	100%
Area M	<u>Adv</u>	<u>2442</u>	<u>2826</u>
Wood	0.40	0.41	0.40
Oxygen	0.00	0.13	0.13
Power	0.05	-0.06	-0.04
Fuel	0.03	0.03	0.04
MTIO	0.10	0.10	0.10
Capital	0.38	0.39	0.38
Salaries+OH	0.07	0.08	0.08
Cat & Chem	0.10	0.06	0.06
Water	<u>0.03</u>	0.03	<u>0.03</u>
Total ex H2 compr.	1.169	1.184	1.172
Incl. H2 Compression			
Power	0.09	-0.02	-0.01
MTIO	0.11	0.11	0.10
Capital	<u>0.40</u>	0.40	<u>0.39</u>
Total	1.218	1.233	1.221

Technical Accomplishments and Progress: Membrane Economic Process Parameters

- Temperature Increase
 - + Increases flux
 - Decreases H₂ partial pressure with WGS
- Membrane Area Increase
 - + Increases hydrogen recovery
 - Increases capital cost
- Permeate Pressure Increase
 - Decreases flux
 - + Decreases compression cost

Technical Accomplishments and Progress: Effect of Permeate Pressure, H₂ Recovery (Area)

Technical Accomplishments and Progress: Conclusions for Preliminary Economic Analysis

- Economic analysis verified the technology will meet the DOE cost target of \$1.60/kg H₂, based on a feasibility study of the membrane materials and the initial conceptual process design.
- Economic cost of hydrogen production via membrane is comparable with PSA.
- Optimum permeate pressure is about 0.2 bar.
- Optimum membrane/ WGS temperature is at 1382°F (750°C) or less.
- Optimum hydrogen recovery is at 100% of reformer product H₂

Proposed Future Work

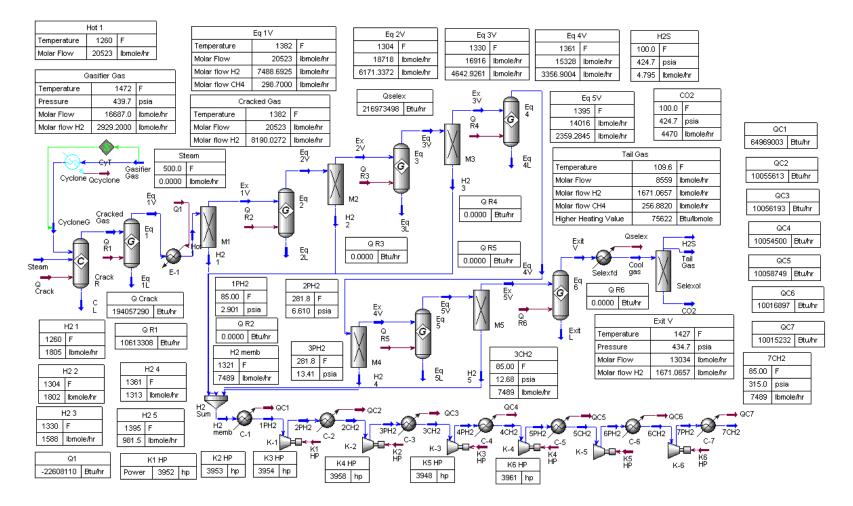
- Continue to identify metal additives to enhance the catalytic activity, chemical and mechanical stability of Pd-based alloys in the presence of sour-H₂ and investigate coatings for non-Pd alloys - NETL and GTI
- Synthesis of Pd-containing glass-ceramic membranes Schott
- Process Development and Economic Analysis for different downstream processes after biomass gasification ("go/no-go" point) - GTI
- Fabrication of membrane module integrated with biomass reactor GTI

Summary

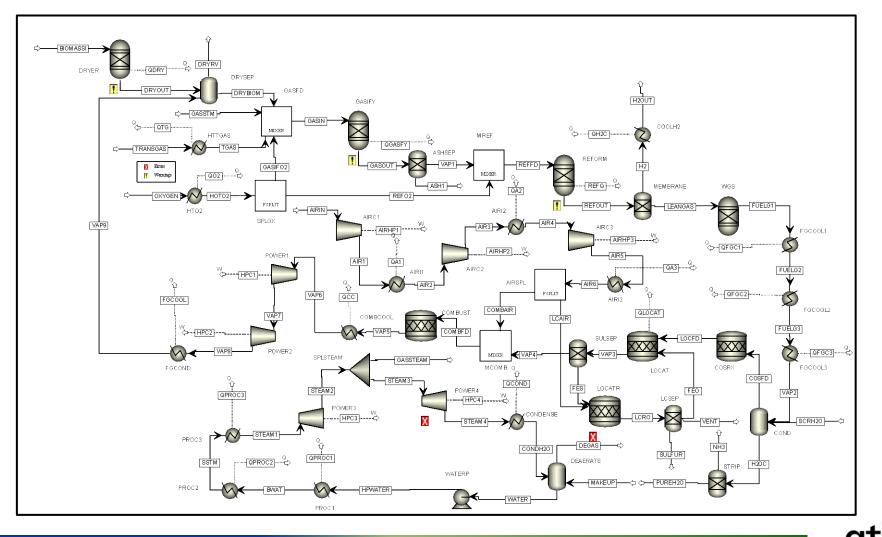
- Project was initiated again (February 2010) after 1 year hiatus.
- Continued development of metallic, glass-ceramic membranes
- Continued process development and economic analysis - Go/No Go decision point
- Membrane module design was completed.
 Module capable of a flux rate of 80+ SCFH/ft²

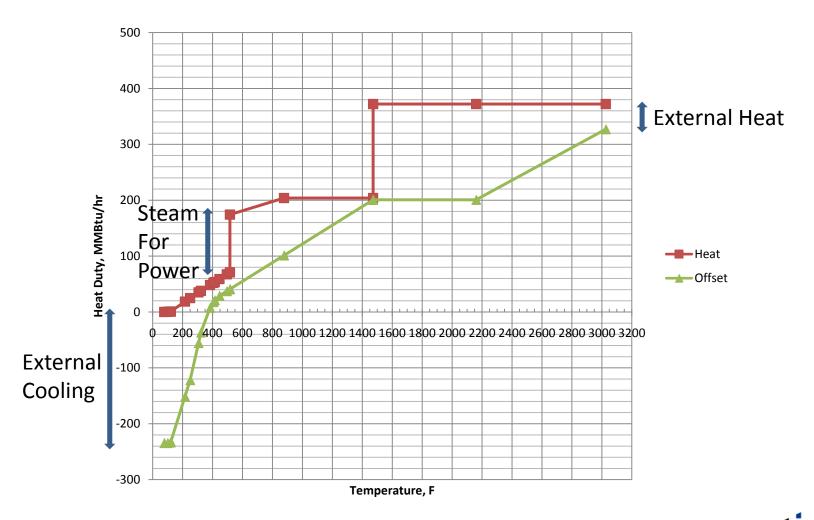
Technical Back-Up Slide

Technical Accomplishments and Progress: Potential Sites for Membrane Module



Auburn University

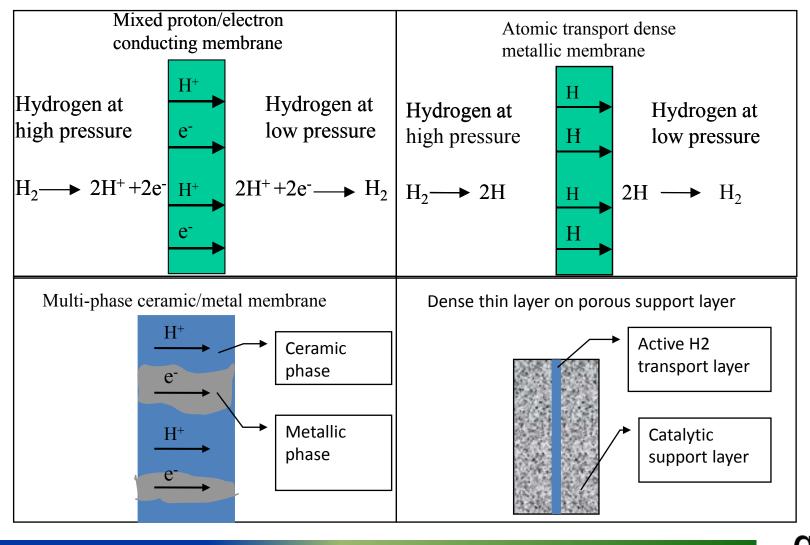

Gas Technology Institute-FFTF


Technical Accomplishments and Progress: Hysys[®] Model

Technical Accomplishments and Progress: Aspen Plus[®] Model

Technical Accomplishments and Progress: Pinch Analysis

Technical Accomplishments and Progress: Utilities estimation


	<u>Power, kw</u>			
	<u>PSA</u>	<u>6F</u>	<u>7F</u>	
Feed handling & drying	742	742	742	
Gasification, reforming	3636	1949	1883	
Compression, S removal	26058	0	0	
Shift, PSA	159	0	0	
Membrane	0	0	0	
H2 Compression final	4190	3827	3939	
H2 Comp to 315 psi		18528	19066	
Steam system	662	371	273	
Power generation	-29974	-31883	-30896	
Cooling water	1152	368	198	
Miscellaneous	3660	3660	3660	
Total	10285	-2438	-1135	
Total ex H2 comp	6095	-6265	-5074	

Technical Accomplishments and Progress: Capital Cost Estimation by Scaling

13	82 F, Case 7J	(100% rec	overy at 300		<u>MMBtu/hr</u>	<u>lb/hr</u>	<u>2005\$</u>
	psi), 0 .2	5 bar perm	neate	Shift and PSA			0
	<u>MMBtu/hr</u>	<u>lb/hr</u>	<u>2005\$</u>	Membrane		3297	23079000
Flue Exch	0.80		49622	HT Shift		383018	1275459
Dryer		367437	19992961				
S100			20042584	Comp intercool	125.40	15096	143567
				Comp air cool		15096	154334
Reform exch 1	2.70		36652	Comp H2O cool		15096	50822
Reform exch 2	168.20		2372426	H2 comp		15096	2508133
Gasifier & blower	0.00		0	H2 Comp (300psi)	23726h	р	11024574
Renugas			24407784	Precomp KO		15096	36283
Reform/ regen		100000	3636944	Post KO		15096	37910
S200			30453806	S500			13955624
	0.00		22520				
Water cooler	0.90	247507	32530	Blowdown cool		144121	4690
LOCAT heater	54 50	317507	7304	Water cooler		60000	15075
ZnO heater	51.59	0	194574	Boiler & pumps		144121	8810331
Syngas compr		0	0	S600			8830096
Reformer blower		385441	96649	5000			0000000
Sludge pump		997	20503	S700			3621184
LOCAT vessel		0	0	5700			5021104
Zno beds		0	0	Dida 9 structure			6268000
Precomp KO		0	0	Bldg & structure			6368000
Postcomp KO		0	0				
Sludge tank		21718	30608	Plant			108 million
S300			382168	Plant ex H2 comp			105 million

Advanced Inorganic Membranes for Biomass Gasification Application

