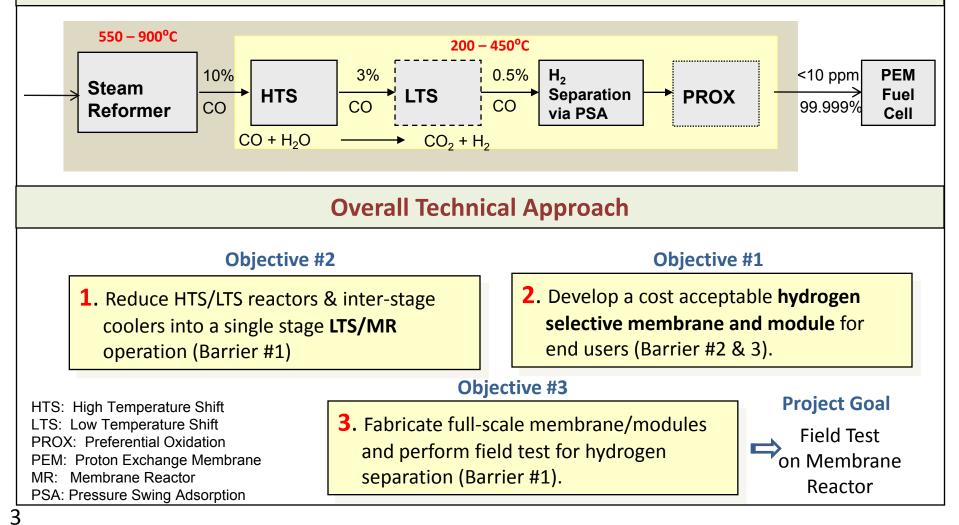
Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production

DE-FG36-05GO15092

PD 072

Paul KT Liu Media and Process Technology Inc. 1155 William Pitt Way Pittsburgh, PA 15238 - 1678 May 10, 2011

This presentation does not contain any proprietary, confidential, or otherwise restricted information


Overview

 Project Start Date 7/1/05 Project End Date 12/31/11 Percent Complete 90% 	 BARRIERS #1 Testing/Analysis: few commercial scale membrane- and membrane reactor-based processes in operation #2 Permeate Flux/Selectivity: cost vs performance target meeting our end user requirements #3 Stability: lack of long term membrane and membrane reactor performance data under our target field conditions
 Total project funding DOE Share: \$2,592,350. Contractor Share: \$648,087. FY10: \$100K FY11: \$481K No catalyst development activities due to funding limitation in the beginning of the project 	 Professor Theo T. Tsotsis University of Southern California, Catalytic membrane reactor expert Dr. Babak Fayyaz-Najafi Chevron ETC, End User Participant Dr. Hugh Stitt, Johnson Matthey, Catalyst Manufacturer Dr. Pat Hearn, Ballard Power Systems Fuel Processing End User

Overall Project Objectives - Relevance

- 1. Develop, fabricate and demonstrate field implementable hydrogen selective membranes/modules
- 2. Intensify/improve conventional hydrogen production process via a membrane reactor
- 3. Prepare field test modules and conduct a field test for hydrogen production/purification

Example of Conventional Process - Steam Methane Reforming (SMR)

Specific Objectives and Technical Approach for FY10-11

•Develop economic bundling technique for Pd membrane tubes •Evaluate bundle performance

Field Test H₂ Recovery (Barrier 1&2)

- Fabricate 2nd generation membrane/bundle to meet commercial partner's cost and performance criteria.
- Use pilot-scale gas separation test to compare bundle to single tube performance.
- □ Field test hydrogen recovery from reformate stream.

Design and fabricating full-scale membrane reactor for field testing (Barrier 1)

- Use bundles for WGS-LTS process in the full scale membrane reactor.
- Incorporate cooling coils for in-situ cooling.

Develop post-treatment technology to meet the CO level requirement (Barrier 1&3) Develop 3^{rd} generation membrane with cooling stability in the presence of H₂.

Developed low cost potting technique for commercially viable Pd membrane tube bundles

Last year we successfully met our commercial partner's low cost request and this year we developed a commercially-viable potting technique that packages the Pd membrane tubes into bundles.

Prepared palladium membrane bundles and confirmed performance with field testing

We prepared membrane bundles for field testing; verified separation properties at our pilot plant and end user site; and prepared bundles to be packaged into the reactor for field testing.

Used a simulated application environment to test long-term thermal cycling stability of Pd membrane bundles

We tested long-term cycling stability of Pd membrane bundles using a simulated application environment for ~150 thermal cycles demonstrating stability in nitrogen between room temperature and 350°C.

Developed a post-treatment strategy to meet the hydrogen product purity requirement of <<10ppm CO</p>

Our membrane reactor work in FY 09-10 delivers 83% hydrogen recovery of 99.9% purity hydrogen with ~ 50ppm CO. Our bench-top post-treatment study this year shows the reduction of 300, 70 and 10ppm CO in H_2 to 16, 1.2 and 0.3ppm respectively.

Fabricated reactor module for field test

We designed the full-scale membrane reactor and are currently preparing membrane tube bundles and a built-in cooling coil for in-situ WGS-LTS heat transfer.

Developing Pd membranes with cooling stability in the presence of hydrogen

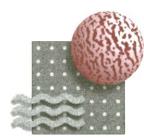
We conducted cyclic cooling tests to identify a potential alloy for upgrading our Pd membrane product with this cooling feature.

M&P CERAMIC MEMBRANES - Low Cost

for harsh environment applications

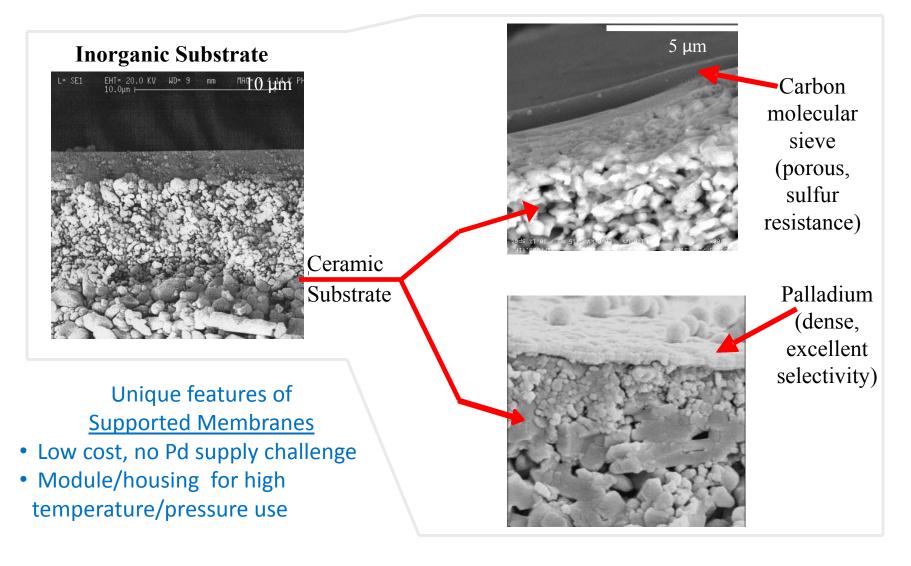
Developmental Work Required

- Deposition of an additional thin film for hydrogen separation
- Fabrication of bundle/housing suitable for working environment


Examples of Commercial Installations

• Oil filtration applications at 150°C and 80 psi

• Water vapor recovery from flue gas at ~75 °C


Proposed Applications

- Hydrogen recovery from reformate
- Water gas shift (WGS) membrane reactor at 200 to 350°C

M&P Advanced Inorganic Membranes

M&P's Core Technology: Thin film deposition on porous substrates

Full-scale Pd Membrane Tubes

Pd Thin Film Coated on the Outside with a Tubular Commercial Ceramic Membrane as Substrate

	Tube Dian	neter [cm]	Tube Length	Surface Area	Surface Ar
Layer Location	OD	ID	[in]	[m ² /30"L tube]	Ratio [-]
Inside	0.57	0.35	30	0.0084	1.00
Outside	0.57	0.35	30	0.0136	1.63

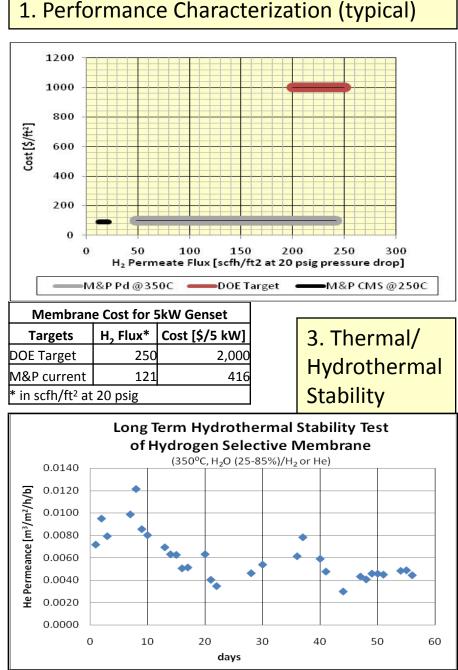
Outside coated Pd membrane product is a preferred choice due to its >50% increase in surface area.

Palladium Membrane Bundles for Portable Power Generation Applications for this project

ACCOMPLISHMENT in FY10-11

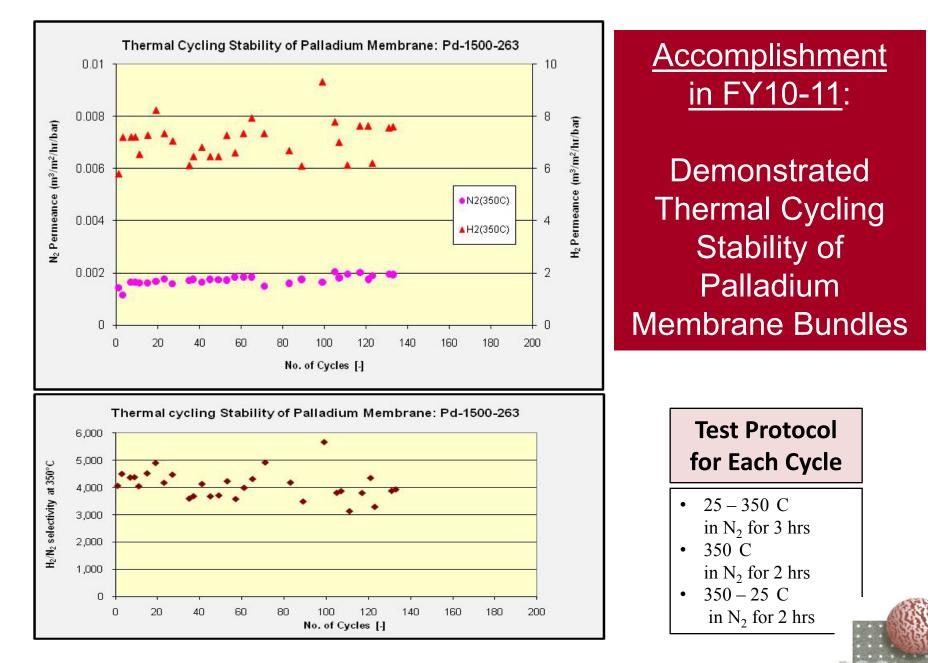
Used low cost potting technique to pot outside coated Pd membrane tubes to create commercially viable bundles. Full-Scale Ceramic Membrane Bundles for Gas Separation

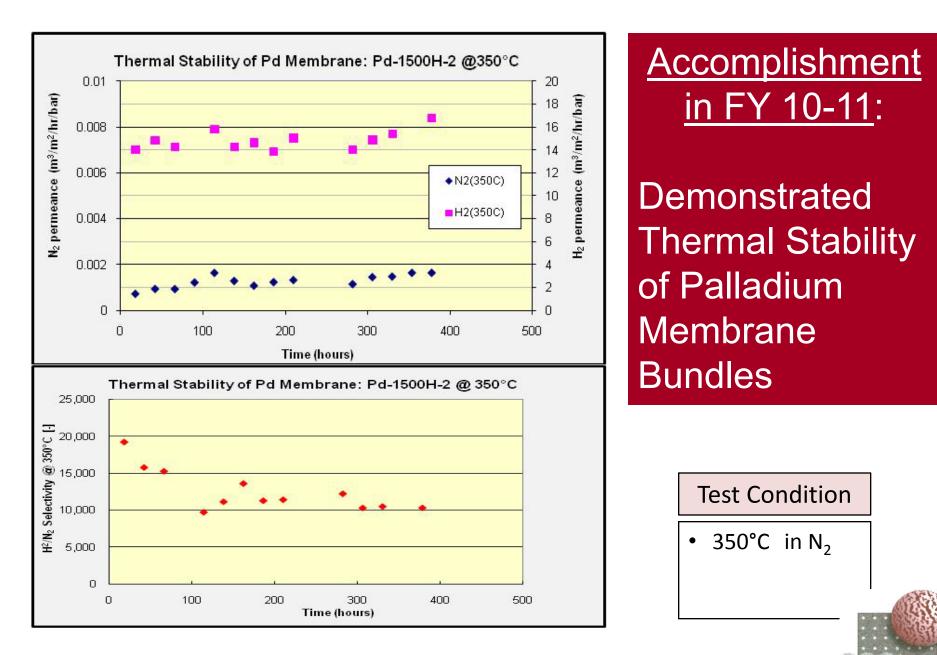
Cost Target for Applications Stationary Power Generators:


Membrane-based Process Challenges

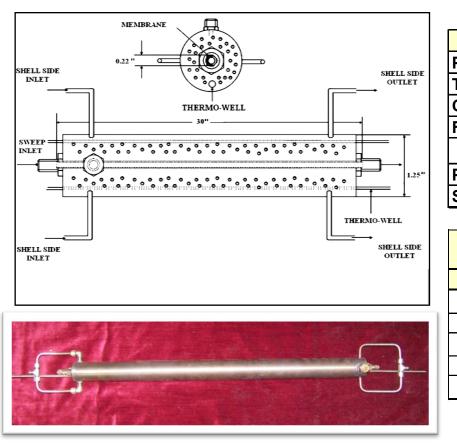
Cost Allocations for A 5kW Fuel Cell Based Genset based upon a conventional diesel fuel reforming					
Component	Typical Equipment	Cost [\$]	\$/kW		
Purifier	Pd membrane*	400	80		

•The benefits offered by the membrane reactor were not taken into consideration in this analysis.


(Courtesy of Ballard Power Systems)

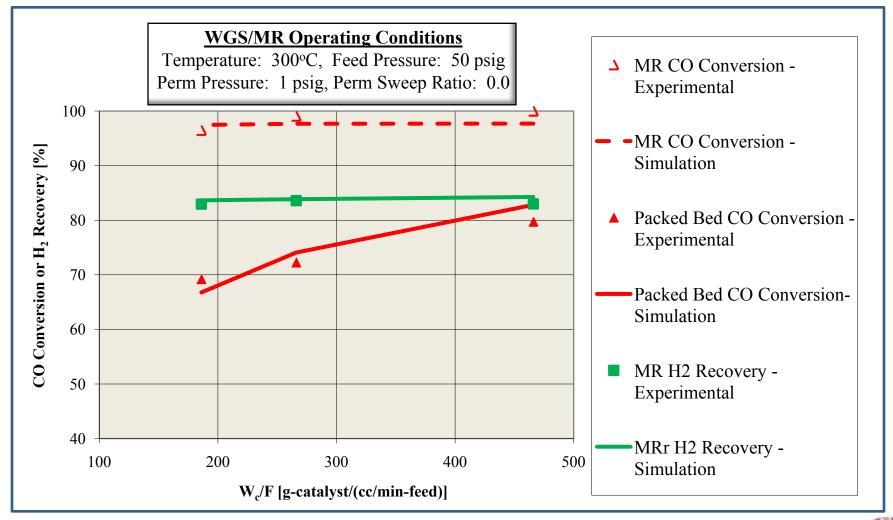


Evaluation of M&P Pd Membranes/Bundles: Results


- 2. Thermal and Thermal Cycling Stability
- In FY 09-10, we presented our results on thermal and thermal cycling stability of our Pd membrane tubes.
- In FY10-11, we focused on the stability test for the membrane bundles. Extended thermal and thermal cycling stability test has been conducted in this period to verify its stability for the frequent start-up and shut-down requirement for our target application.
- See the following two slides for technical details.
- 1. Our Pd membranes/bundles have been comprehensively evaluated under multiple temperature cycles and extended thermal/hydrothermal test.
- 2. Our cost/performance ratio meets/exceeds the DOE target. More importantly, the membrane is prepared on existing commercial ceramic membrane products.
- 121 scfh/ft² at 20 psig with \$100/ft² can meet the cost target set by our commercialization partner.

WGS-LTS Membrane Reactor Activities in FY09-10

Objective: using a <u>full-scale</u> H_2 selective membrane to demonstrate high CO conversion and high purity hydrogen product at a high hydrogen recovery ratio


Physical Characteristics and Operating Parameters			
Pd Membrane:			
Temperature:	300°C		
Catalyst:	30g of Cu/ZnO		
Feed:	Ţ		
H ₂ :CO:CO ₂ :CH ₄ :H ₂ O	5.22:1:0.48:0.22:2.8		
Pressure:	30 to 50 psig		
Sweep Ratio:	0 to 0.3		

Membrane Performance Characteristics: Single Component Gas Permeances at 300°C			
Gas	Permeance [m3/m2/h/bar]	Sepn Factor	
H ₂	16.82	1	
CO	0.01	2,369	
CO ₂	0.01	2,951	
Ar	0.01	2,474	
N ₂	0.01	2,548	

WGS-LTS Membrane Reactor Activities in FY09-10

Experimental results from the operation at 50 psig and with no sweep

The experimental results conducted in FY09-10 demonstrated \geq 99% CO conversion and \geq 99.9% H₂ purity (~50 ppm CO) at >83% hydrogen recovery was possible by our WGS-MR.

Media and Process Tech Inc.

16

Accomplishment in FY10-11

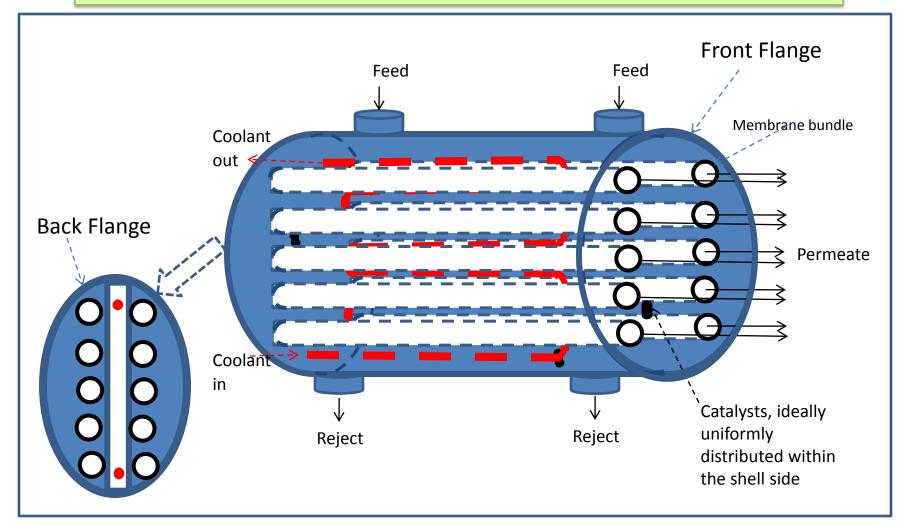
Post Treatment for CO Reduction for H2 Generated from WGS-MR

CO Contaminant in the Hydrogen Stream Produced from WGS-MR

As shown in our previous membrane reactor study, our palladium membrane has been able to deliver a hydrogen product stream with ~50 ppm CO using our standard Pd membrane as a reactor.

Our Proposed Solution to Reduce CO Contaminant Level

A post treatment strategy has been developed and experimentally demonstrated on the technical feasibility in reducing CO contaminant to an extremely low level, such as <10-1 ppm as shown below


Concentration of CO in Feed [ppm]	Residual CO in Product [ppm]	W/F [g catalyst/(mol CO/hr)]
300	16	4,148
70	1.1	17,778
50	0.3	24,889

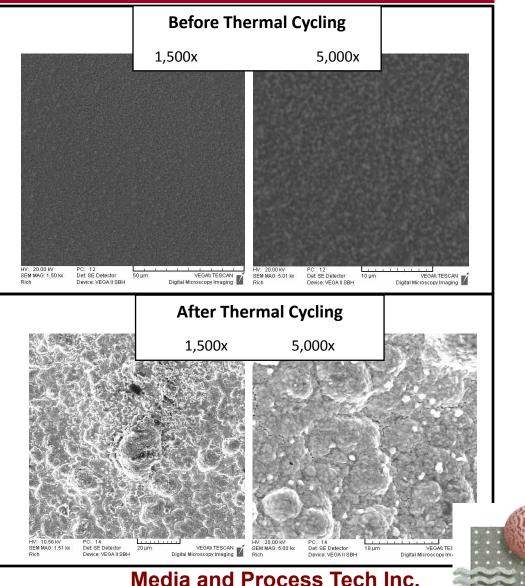
Activities Planned in 2011

- demonstrate this post treatment strategy in conjunction with our WGS-MR.
- further incorporate this post treatment into our WGS-MR as an integrated membrane reactor.

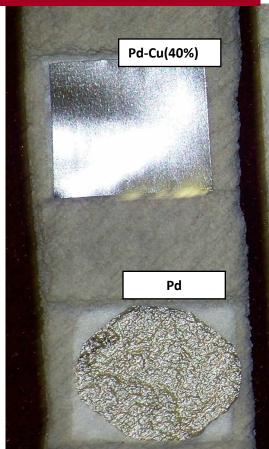
Conceptual Model for Catalytic Membrane Reactor using Pd Membranes

Accomplishment in FY 10-11 R&D on Stability of Cooling in the Presence of Hydrogen for Palladium Membranes

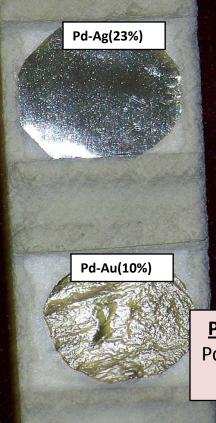
Treatment:


Thermal cycling of in the presence of H₂ from 350°C to room temperature

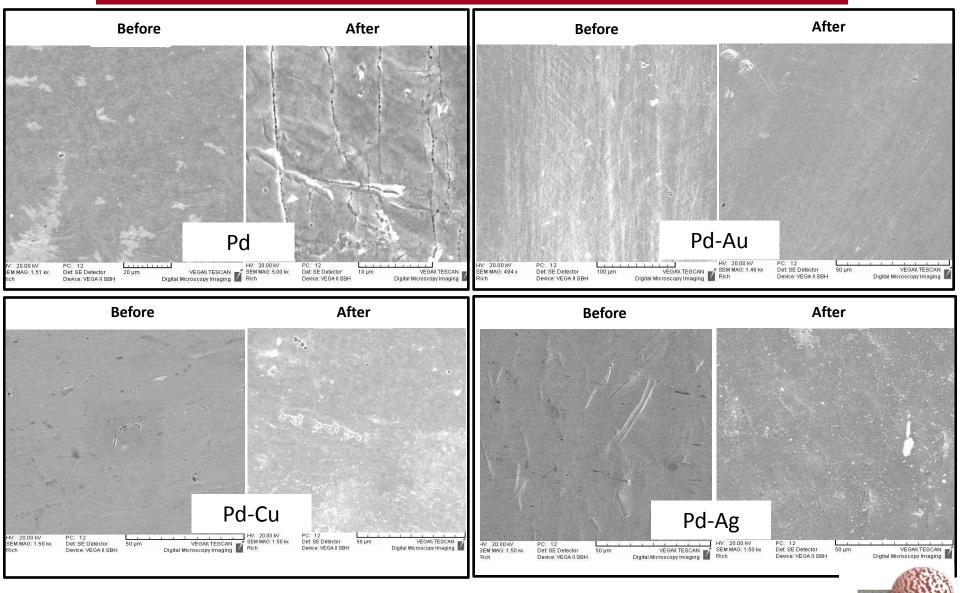
Sample:


Our Pd membrane supported on commercial ceramic substrate

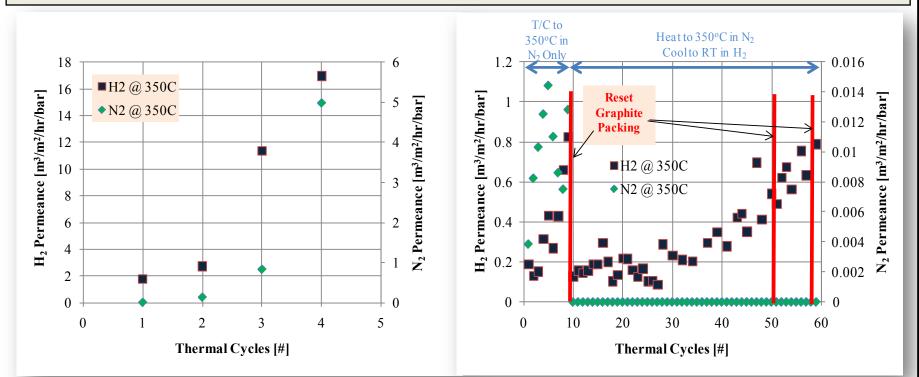
Results:


Our Pd membrane is not stable as shown in the morphological change after treatment (as most Pd membranes).

Evaluation of Commercially Available Pd Alloy Foils for Cooling Stability under H₂ Charged – As a guideline for our membrane material development


Pd-alloys			
Alloy Type Tested	Size	Vendor	
Pd	25mm x 25mm x 0.025mm	Alfa Aesar (978)5216300	
(77%Pd) / (23%Ag)	25mm x 25mm x 0.025mm	Alfa Aesar (978)5216300	
(90%wtPd) / (10%wtAu)	25mm x 25mm x 0.025mm	Refining system, Inc (702)3680579	
(60%wt)Pd / (40%wtCu)	25mm x 25mm x 0.025mm	Refining system, Inc (702)3680579	

Pd Alloy Discs after 34 Cooling Cycles: Pd-Cu was intact, Pd-Ag showed wrinkle near the edge, Pd and Pd-Au failed.


SEM Examination of Various Palladium Alloys

Overall, visual and SEM inspection of the unsupported films following H_2 thermal cycling indicated that the film stability goes as Pd-Cu(40) ~ Pd-Ag(23) >> Pd-Au(10) >> Pd. 21

Permeation Measurements of Various Palladium Alloys

H₂ and N₂ permeances of the Pd-Ag(23%) alloy (left) and Pd-Cu(40%) alloy (right) flat disc membranes following thermal cycling between RT and 350 °C with cooling in hydrogen.

Conclusions of Our Evaluation Study on Cooling Stability of Pd Alloys

- (i) Considerable damage to Pd and Pd/Au membranes throughout the cooling test.
- (ii) The Pd-Cu and Pd-Ag alloys were stable throughout the cooling test under visual and SEM examination
- (iii) No damage to Pd-Cu by the graphite packing was observed.
- (iv) Damage to to the Pd-Ag alloy was observed in our recent test even without using graphite packing.

Development of Pd Alloy membranes with a imilar composition as the Pd-Cu foil is recommended.

Summary and Conclusions – FY10-11

- Potting technique has been developed to package our low cost Pd membrane tubes into commercially viable bundles while retaining the low cost feature. Further these bundles have demonstrated the thermal and thermal cycling study (~150 cycles), similar to the stability demonstrated previously for the Pd membrane tubes.
- Both pilot and field tests have confirmed the performance of our Pd membrane bundles, i.e., the separation efficiency of bundles ≈ membrane tubes
- >99% CO conversion and >99.9% purity hydrogen (containing ~50 ppm CO) at >83% hydrogen recovery ratio was demonstrated experimentally using a membrane reactor packed with a commercial catalyst in FY 09-10. During this period, we have developed a post treatment strategy which can further reduce the CO contaminant to << 10 ppm. A bench top study has demonstrated this technical feasibility.
- A full-scale membrane reactor packed with our Pd membrane bundles and equipped with internal cooling coils has been designed and is currently under fabrication for the field test to be conducted in 2011.
- Our evaluation study using commercially available Pd alloy foils has concluded that Pd-Cu alloy could potentially offer the cooling stability in the presence of hydrogen. This cooling stability would provide a desirable feature for our target application.

Work Plan for Rest of Project Period

- 1. Complete the fabrication of a full-scale membrane reactor packed with Pd membrane bundles and equipped with cooling coils for field test to be performed in 2011.
- 2. Integrate the post treatment strategy into the membrane reactor to deliver hydrogen product with << 10 ppm CO.
- 3. Conduct a field test with the use of the membrane reactor at the participated end user site.
- 4. Develop the 3rd generation Pd membrane with the cooling stability in the presence of hydrogen as a desirable feature for our target application.

