Zeolite Membrane Reactor for Water-Gas-Shift Reaction for Hydrogen Production

Jerry Y.S. Lin, Henk Verweij, Peter Smirniotis and Junhang Dong

University of Cincinnati Arizona State University The Ohio State University

Project ID: PD073

This presentation does not contain any proprietary, confidential, or otherwise restricted information

2011

Timeline

• Project start date:

July 1, 2005

Project end date:

April 30, 2012

• Percent complete: 90%

Budget

- Total project funding
 - DOE **\$1,999,727**
 - Contractor: \$501,310
- Funding for FY10: **\$50,000**
- Funding for FY11: **\$388,009**

Barriers

Barrier addressed: Cost reduction of distributed hydrogen production from natural gas and renewable liquids through improvement of reforming and separation efficiencies

Partners

- University of Cincinnati
- Arizona State University
- Ohio State University

Relevance – Project Objectives

Fundamental study for the development of chemically and thermally stable zeolite membrane reactor for water-gas-shift reaction for hydrogen production

- Synthesis and Characterization of Chemically and Thermally Stable Silicalite Membranes
- Experimental and Theoretical Study on Gas Permeation and Separation Properties of the Silicalite Membranes
- Hydrothermal Synthesis of Tubular Silicalite Membranes and Gas Separation Study
- Experimental and Modeling Study of Membrane Reactor for Water-Gas-Shift Reaction

Approach – Zeolite Membrane Reactor for Water-Gas Shift Reaction

Zeolite Membrane Requirements:

≻Operate at 350-550°C

Chemically stable in H_2S , thermally stable at ~400°C

Hydrogen permeance ~ $5x10^{-7}$ mol/m².s.Pa

≻Hydrogen selectivity ~ 50

Two product streams: H_2 (>94% purity) and CO_2 (>97 purity)

Approach – Chemical Stable Microporous MFI (Silicalite) and DDR-type Zeolite Membranes

Intersecting channels

MFI (Silicalite): 10-T-Ring intersecting channels of 5.1-5.6 A in size

T · H · E OHIO STATE UNIVERSITY Figures from R. Krishna and J.M. van Baten, (2008)

Cages separated by narrow windows

8-T-Ring, Windows of 3.6-4.4A in size in size (studied as a reference)

Approach – Counter-diffusion CVD of Silica for Improving Membrane Quality

Approach – CVD Narrowing Zeolitic Pores to Further Improve Selectivity

Previous Technical Accomplishments (Milestones Achieved)

- Obtain disk-shaped MFI zeolite membranes on the desired intermediate layers with H₂/CO₂ separation factor over 25 and H₂ permeance larger than 1x10⁻⁷ mol/m².s.Pa.
- Tubular membrane supports with desired intermediate barrier layers for stability improvement were developed.
- Obtain a new WGS catalyst with activity and selectivity comparable to the best available commercial catalyst but with improved chemical stability in SO₂ and H₂S containing WGS reaction stream at temperatures higher than 500°C.
- Develop a membrane module and sealing system for tubular membrane reactor that can be operated in the WGS conditions for at least 1 month.
- Develop micro-wave synthesis method to prepare tubular silicalite membranes with H₂/CO₂ perm-selectivity over 10 and H₂ permeance larger than 4x10⁻⁷ mol/m².s.Pa.
- Obtain CVD modified tubular silicalite membranes with H₂/CO₂ separation factor over 120 and H₂ permeance larger than 2.0x10⁻⁷ mol/m².s.Pa.

Technical Accomplishment – Gas Permeation/Separation and CVD Modification Study

	He	H ₂	CO ₂	CO
Kinetic Diameter, d _m (nm)	0.26	0.289	0.33	0.376
L-J Length, σ_m (nm)	0.255	0.283	0.394	0.369
Molecular Weight, Mw (g /				
mol)	4	2	44	28

Technical Accomplishment – Limited Separation Ability of Defect-Free Microporous Zeolite Membranes

The maximum H_2/CO_2 selectivity offered by a perfect MFI or DDR zeolite membranes is about 12.

Technical Accomplishment – CVD for Reduction of Zeolitic Pores and Improvement of H₂/CO₂ Separation Factor of MFI Zeolite Tubular Membrane

On-stream monitoring of H_2/CO_2 separation performance during the CCD modification on α alumina-supported MFI tubular membrane

 H_2/CO_2 selectivity of MFI type zeoltie membrane can be effectively improved by CVD of MDES via controlled catalytic cracking deposition (CCD) in selective sites in zeolite pores

UNIVERSITY

Technical Accomplishment – Zeolite Membrane with High H₂/CO₂ Perm-Selectivity

H₂/CO₂ perm-selectivity of 140 and H₂ permeance about 4x10⁻⁷ mol/s.m².Pa at 450°C was obtained for the CVD modified membranes 12

Technical Accomplishment – Single Gas Permeance of a CVD Modified Tubular Membrane at Different Temperatures

CVD modified tubular zeolite membrane exhibits molecular sieving properties

Technical Accomplishment – Water Gas Shift Reaction in a CVD Modified Tubular Membrane Reactor

Effect of WHSV on CO-conversion and hydrogen recovery for a fixed $R_{H2O/CO}$ of 3.5: (---) Equilibrium conversion ($\chi_{CO,e}$); (\Box) Conversion in membrane reactor (χ_{CO}); (Δ) Conversion in traditional reactor (χ_{CO}); (\times) H₂ recovery.

Technical Accomplishment – Stability Testing of Sulfur Resistant, High Temperature WGS Catalyst

Long term time on stream stability experiments over Fe/Ce catalyst for 30 days in the presence of 400 ppm of sulfur Methane yield formation during long term time on stream stability experiments over Fe/Ce catalyst for 30 days in the presence of 400 ppm of sulfur

Technical Accomplishment – CCD Modification of Disk MFI Zeolite Membrane with YSZ Barrier Layer

Technical Accomplishment – Water Gas Shift Reaction in a Modified Disk Membrane Reactor at Different Pressures

CO conversion for a fixed WHSV=7,500h⁻¹ and various temperature of (a)400°C, (b)450°C, (c) 500°C and (d) 550°C: (---) equilibrium CO conversion; (Δ) CO conversion under feed pressure 1.5atm in tube MR of previous work; (\Box) CO conversion in disk MR; (o) CO conversion in TR.

Technical Accomplishment –Water Gas Shift Reaction in a Modified Membrane Disk Membrane at Different Conditions

Effect of WHSV on CO conversion for a fixed $R_{H2O/CO}$ of 3.5:

(---) equilibrium conversion;

- (\Box) conversion in disc MR at P_{feed}=6atm;
- (Δ) conversion in tube MR at P_{feed}=1.5atm;
- (o) conversion in TR at P_{feed} =1.5atm.

Effect of N_2 sweeping flow rate on CO-conversion for a fixed WHSV=7,500 h⁻¹ and 500°C:

- (---) equilibrium conversion;
- (\times) conversion in disc MR at P_{feed}=2atm;
- (Δ) conversion in disc MR at P_{feed}=4atm;

(\Box) conversion in disc MR at P_{feed}=6atm. 18

Long-Term Test for Alumina-Supported Modified MFI-Zeolite Membranes

Description	Operation T & P ranges	Time on stream (days)	Accumulative time on stream (days)	H ₂ /CO ₂ perm- selectivity	H ₂ permeance (<i>mol/s.m².Pa</i>)
Fresh	400 – 550°C 1 atm	NA	0	15	1.3 10 ⁻⁷
After dry gas separation	400 – 550°C 1 atm	20	20	16	1.4 10 ⁻⁷
After WGS	400 – 550°C 2 - 6 atm	110	130	12	0.9 10 ⁻⁷
After WGS with H ₂ S	400 – 550°C 2 atm	50	180	11	0.8 10 ⁻⁷
After WGS & Gas Sep.	400 – 550°C 2 atm	20	200	10	0.7 10 ⁻⁷

Technical Accomplishment – Synthesis of High Quality Disk MFI-Type Zeolite Membranes on YSZ Coated Alumina Porous Support

- Synthesized by a template-free secondary growth method to minimize intercrystalline gaps
- Post-CVD modification with TEOS to repair the defects
- Zeolite membranes can be prepared by microwave method
- Zeolite membranes are grown on YSZ intermediate layer to improve chemical stability

Technical Accomplishment – Stability Testing of MFI Zeolite Membrane with YSZ Barrier Layer under WGS Conditions

Technical Accomplishment – High Quality Tubular Supports with YSZ Barrier Layer for Stability Improvement

(a) SEM cross section of an YSZ-coated AA3 α -Al₂O₃ support, (b) SEM surface image of an YSZ-coated AA3 α -Al₂O₃ support.

MFI zeolite membrane will be synthesized on the tubular supports with YSZ barrier layer and subsequently modified for H_2/CO_2 separation factor improvement

Collaboration

- Within DoE H₂ Program
 - <u>Arizona State University</u> (membrane synthesis and WGS reaction)
 - <u>University of Cincinnati</u> (membrane modification and catalyst development)
 - <u>Ohio State University</u> (membrane support and module development)
- Outside of DoE H₂ Program
 - NGK Co. (Japan) (synthesis of DDR membranes)
 - Sintef Research (Norway) (CO₂ permselective membrane)
 - University of Victoria (Australia) (zeolite membrane synthesis)
 - Ecotality Inc. (US) (hydrogen storage technology)

ASU/NGK joint publication: M. Kanezashi, J. O'Brien- Abraham, Y.S. Lin and K. Suzuki, "Gas permeation through DDR-type zeolite membranes at high temperatures," *AIChE J.*, 54(6), 1478-1486(2008)

Propose Future Work for FY11

- 1. Synthesis of high quality tubular silicalite membranes by secondary growth and CVD modification (UC, ASU)
 - a) H_2/CO_2 selectivity > 50, H_2 permeance > $3x10^{-7}$ mol/m².s.Pa
 - *b)* Silicalite membranes on zirconia support with improved chemical stability
- 2. Separation and stability study of silicalite membranes (ASU, UC)
 - a) Measuring single and mixture gas permeability and selectivity in larger temperature (200-500 °C) and pressure (1-10 atm) range.
- **3**. WGS reaction on silicalite membrane reactor (ASU, UC)
 - a) Improving membrane reactor system including setup (operatable up to 20 atm and 550°C) and membrane module
 - *b)* Optimization of the performance of WGS reaction in the silicalite membrane reactor
 - *c)* Studying stability of the membrane reactor for WGS reaction under optimum conditions.
- 4. Cost analysis of zeolite membrane reactor for WGS

Summary

• Relevance:

Help to develop processes for cost-effective production of hydrogen from natural gas and renewable liquids

• Approach:

Study fundamental issues related to synthesis and separation properties of high quality, stable zeolite membranes, and develop the zeolite membrane reactor for water-gas-shift reaction and hydrogen separation

• Technical Accomplishment and Progress:

Improved understanding of synthesis and gas transport mechanism in zeolite membranes, developed and studied methods and techniques to prepare zeolite membranes with high H₂ permenace (>2×10⁻⁷ mol/m².s.Pa) and selectivity (>120) suitable for WGS membrane reactor application, and catalysts with improved properties for WGS reaction; improved WGS conversion and stable operation with zeolite membrane reactor demonstrated.

Proposed Future Research:

Prepare high performance tubular zeolite membranes and catalyst, and study WGS reaction in zeolite membrane reactors.

