Center for Renewable Energy Science & Technology (CREST) at the University of Texas at Arlington: Value-Added Hydrogen Generation with CO₂ Conversion

Project ID # PD080

PI Names: Rick Billo and Krishnan Rajeshwar

Presenter Names: Krishnan Rajeshwar & Fred MacDonnell

May 9-13, 2011

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 8/15/08
- Project end date: 5/31/11
- Percent complete: 90 %

Budget

- Total project funding
 - DOE share: \$2,387,463.00
 - Contractor share: \$596,865.00
- Project is fully funded

Barriers

Barriers addressed

- DOE: D, E, Y, Z, AA, AB
- Direct photochemical reduction of H⁺ and CO₂ to useful fuels, such as H₂ and CH₃OH, still faces a number of technical challenges. Some of these include:
 - Lack of efficient photocatalysts
 - Difficulty in driving multi-electron processes
 - Coupling these reductions to useful oxidative reactions

Partners

- Interactions/ collaborations
 - none
- Project lead : UT Arlington

Task 1 DOE Identified Barriers:

Oxide Semiconductors for Solar Energy Conversion

Development of Semiconductor Materials for Photoelectrochemical Hydrogen Production	
 Develop and optimize the current state-of-the-art materials for meeting near term efficiency and durability targets. Discover, utilizing combinatorial or other screening methods, new materials for meeting long-term efficiency, durability, and cost targets. Develop cost-effective synthesis techniques for fabricating the most promising semiconductor materials. Develop accelerated screening protocols to evaluate and validate long-term material efficiencies and durability. 	Y, Z, AB

7

Y. Materials Efficiency. Materials with smaller bandgaps more efficiently utilize the solar spectrum, but are often less energetically favorable for hydrogen production because of the bandedge mismatch with respect to either hydrogen or oxygen redox potentials. Materials with appropriate bandedge and bandgap for hydrogen production must be developed.

Z. Materials Durability. Durable materials with the appropriate characteristics for photoelectrochemical hydrogen production that meet the program goals have not been identified. The high-efficiency materials currently available corrode quickly during operation, and the most durable materials are very inefficient for hydrogen production.

AB. Bulk Materials Synthesis. Fabrication techniques for materials identified to have potential for high efficiency, durability and low cost need to be developed on scales consistent with implementation in commercial reactors.

8	 Development of PEC Device and System Auxiliary Material Determine the functional requirements for auxiliary materials including protective coatings, catalytic coatings, photoelectrode substrates, hydrogen impervious materials, and photovoltaic layer materials. Discover, develop, and test materials to facilitate PEC device and systems 	AA	
	development		

AA. PEC Device and System Auxiliary Material. The functional requirements for auxiliary materials must be determined and materials discovered, developed, and tested to facilitate PEC device and systems development. The auxiliary materials may include protective coatings, catalytic coatings, photoelectrode substrates, hydrogen impervious materials, and photovoltaic layer materials.

Task 1 Project Objectives:

New Oxide Semiconductors for Photocatalysis and Photoelectrochemical Catalysis

	Project Milestones	Task Completion Date				
SubTask Number		Original Planned	Revised Planned	Actual	Percent Complete	Progress Notes
1	Proof-of-concept of electrodeposition of BiVO ₄	Dec 2009	Dec 2009	Dec 2009	100	Complete
2	Combustion synthesis of BiVO ₄ nanoparticles	March 2010	March 2010	March 2010	100	Complete
3	Use of BiVO ₄ for CO ₂ photoreduction	Sept 2010	Sept 2010	Sept 2010	100	Complete
4	Combustion synthesis of Bi ₂ WO ₆ and AgBiW ₂ O ₆	Dec 2010	May 2011	May 2011	90	Nearly Complete
5	Photodeposition of Pt nanoislands on AgBiW ₂ O ₆	Dec 2010	March 2011	March 2011	100	Complete
6	Optimizing Bi ₂ WO ₆ and AgBiW ₂ O ₆ for CO ₂ photoreduction	Dec 2010	May 2011	May 2011	90	Nearly complete

Project Objectives

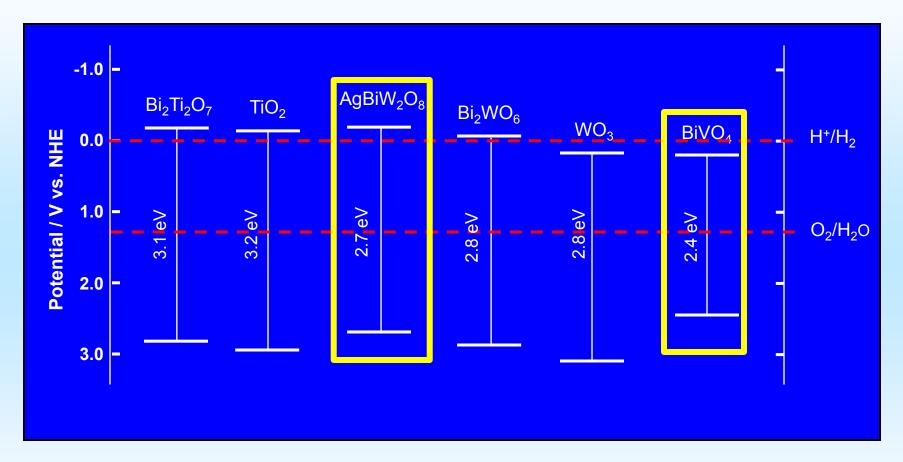
Materials for Solar Energy Conversion

- Heterogeneous Photocatalysts
 - Oxide semiconductors for solar energy conversion and CO₂ photoreduction
 - Demonstrate combustion synthesis as an energy- and time-efficient synthesis method
 - Demonstrate its applicability to the synthesis of bismuth vanadate and silver bismuth tungstate
 - Demonstrate the use of silver bismuth tungstate for mild syngas generation using photoelectrochemistry

Advantages of Combustion Synthesis of Semiconductors

- Exothermic and fast reaction
- Products are homogenous and crystalline
- High surface area
- Simplicity of the process
 - → No special equipment is required
- Possibility to incorporate "dopants" in situ in the oxide

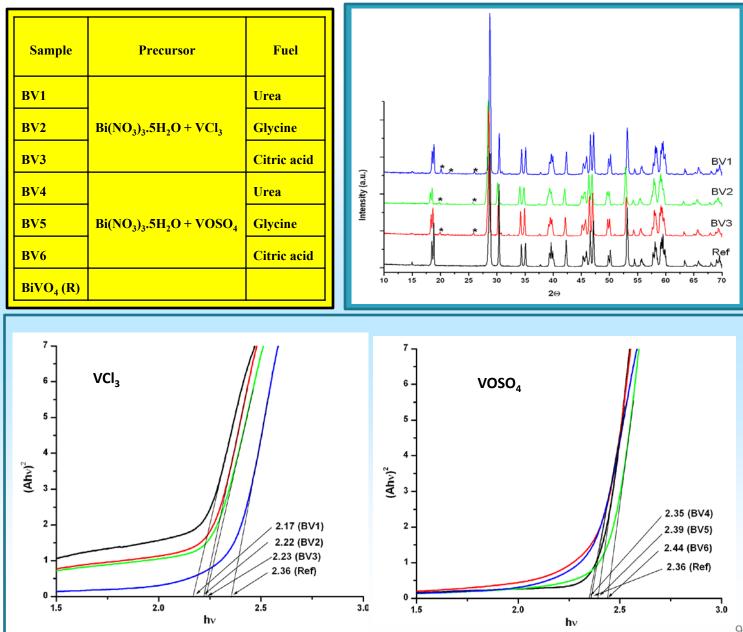
Energy input for synthesis process comes from reaction exothermicity

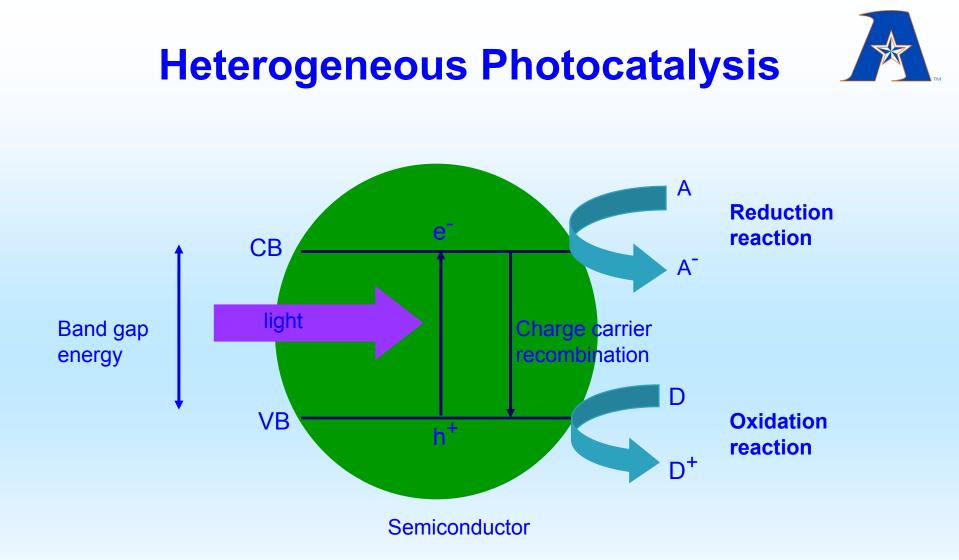


Process Genesis and Variants

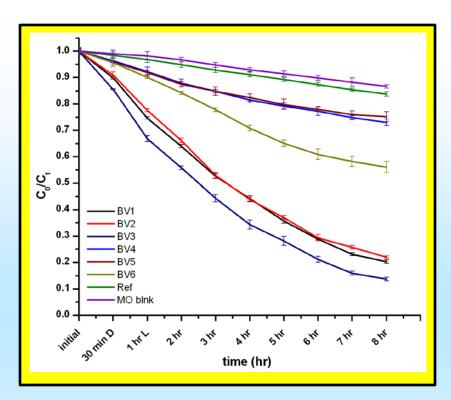
- Self-propagating high-temperature synthesis (SHS)-name coined by A. G. Merzhanov.
- Synonyms: Combustion synthesis, solution combustion synthesis, gel (or sol-gel) combustion, fire or furnace-less synthesis etc.
- Pechini method (U.S. Patent 3,330,697, July 11, 1967) based in resin intermediates, i.e., on ignition of the resin, the organic portion is removed, leaving the mixed product behind.
- This method not widely used for solar applications yet.

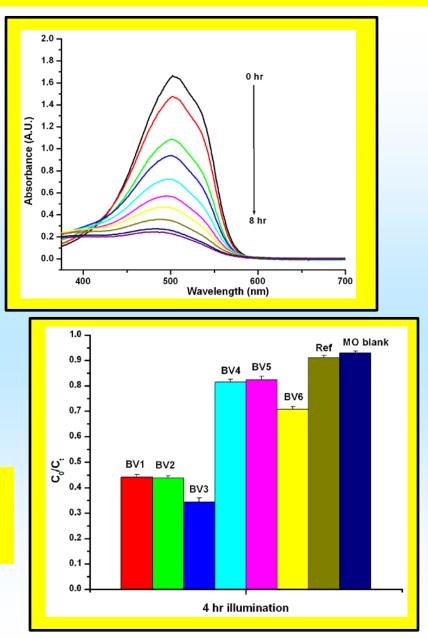
Selected Semiconductor Photocatalysts




Comparison between the band edges of selected semiconductors (at pH 1) and the redox potentials for water splitting.

Combustion Synthesis of Bismuth Vanadate

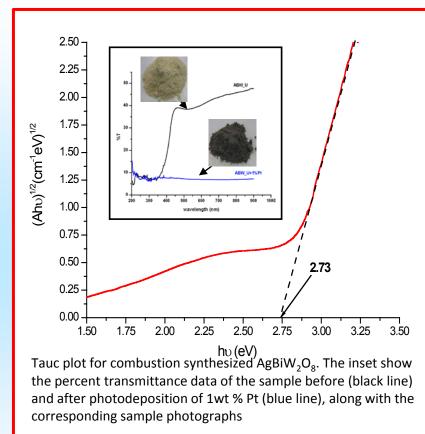


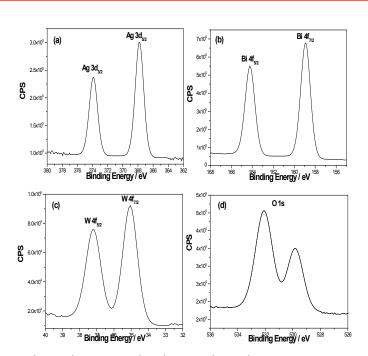


Schematic diagram of the heterogeneous photocatalytic process occurring on an illuminated semiconductor particle.

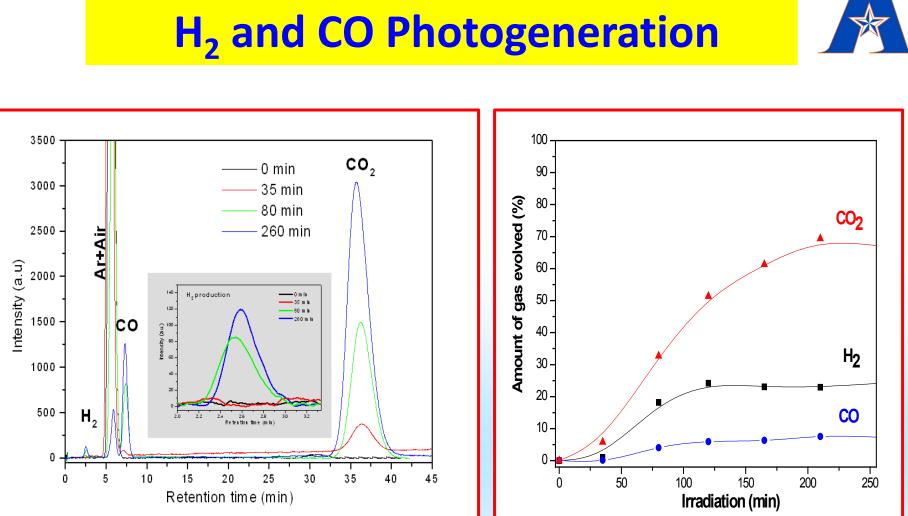
Use of Bismuth Vanadate for Dye Photodegradation

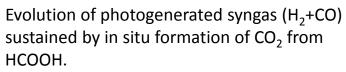
Bismuth vanadate is not suitable for hydrogen generation but is a good photocatalyst for environmental remediation.



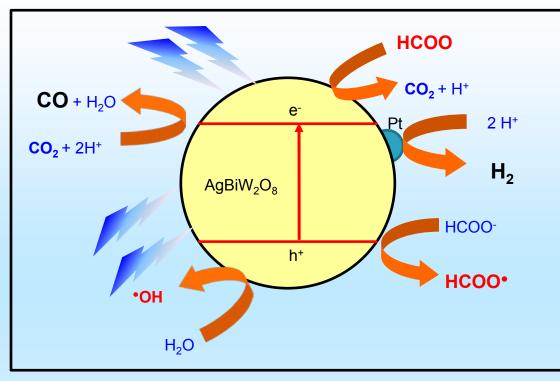

Combustion Synthesis of Silver Bismuth Tungstate

- Precursor mixture of sodium tungstate, bismuth nitrate, and silver nitrate in nitric acid
- Urea used as fuel
- Mixture of fuel and precursor dried and ignited
- Final product washed, dried, and ground to powder


Photogeneration of Syngas Using Combustion Synthesized AgBiW₂O₈



High-resolution core level X-ray photoelectron spectra in the Ag 3d (a), Bi 4f (b), W 4f (c), and O 1s (d) binding energy regimes for $AgBiW_2O_8$ powder prepared by combustion synthesis using urea as fuel.



Selected GC runs for detection of gaseous products during the photocatalytic reaction of $AgBiW_2O_8$ - 1 wt.% Pt in 0.1 M HCOOH

Syngas Photogeneration by AgBiW₂O₈-Pt

Quantum yields (QY %) were measured by chemical actinometry using 0.006 M $K_3Fe(C_2O_4)_3.3H_2O)$ in 1 N H_2SO_4

3.2 x 10⁻² moles of photons/h

$$QY\% = \frac{mol \, of \, product \, formed}{mol \, of \, photons} x100$$

QY $CO_2 = 4.5 \%$ QY $H_2 = 3.0 \%$ QY CO = 0.8 %

0.5 g AgBiW₂O₈/Pt in 200 mL HCOOH 0.1 M

PCP = Photocatalytic performance

PCP CO₂ = 14.4 x 10⁻³ mol/g·L·h
$$PCP = \frac{mol of product}{mV t}$$

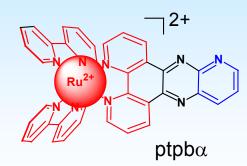
PCP H₂ = 10 x 10⁻³ mol/g·L·h

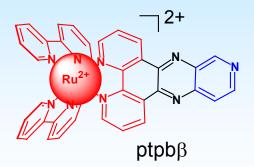
PCP CO = $2.2 \times 10^{-3} \text{ mol/g·L·h}$

Cumulative: $CO_2 = 2.8 \times 10^{-2} \text{ mol/g.L}$, $CO = 3 \times 10^{-3} \text{ mol/g.L}$, $H_2 = 1.0 \times 10^{-2} \text{ mol/g.L}$

Task 1: Summary for Heterogeneous Photocatalysis

- Time and energy-efficient method developed for two new-generation oxide semiconductor photocatalysts: bismuth vanadate and silver bismuth tungstate.
- Silver bismuth tungstate has been used for mild syngas photogeneration.
- Further materials optimization will continue.


Task 2: Molecular photocatalysts for CO₂ Remediation and CH₃OH Formation


Inspiration: Bocarsly and coworkers demonstrate electroreduction of CO₂ using pyridine as a electocatalyst

$$CO_{2} + \underbrace{HO}_{H_{2}O} + \underbrace{e^{-} + e^{-}}_{H_{2}O} + \underbrace{e^{-} + H^{+}}_{H_{2}O} + CH_{3}OH$$
Critical pH effects

Barton CE, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB. Using a One-Electron Shuttle for the Multielectron Reduction of CO2 to Methanol: Kinetic, Mechanistic, and Structural Insights. J. Am. Chem. Soc. **2010**; 132: 11539-51.

Strategy: Generate reduced pyridinium ions using the photochemistry of Ru-polypyridyl complexes

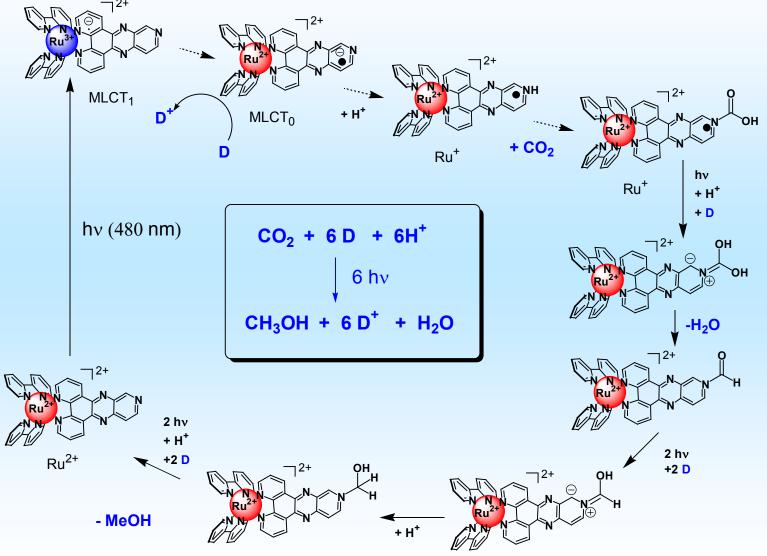
Task 2 DOE Identified Barriers:

Homogeneous Photocatalytic CO₂ reduction and Methanol Formation

	Distributed Reforming of Renewable Liquid Feedstocks	
2	 Analyze and research options for alternative renewable feedstocks (e.g., ethanol, methanol, sugars, sugar alcohols, bio-oils, bio-based Fischer Tropsch liquids) for distributed production. Utilizing the technology concepts developed for distributed natural gas reforming, develop efficient, integrated, compact, robust process technology for bio-derived liquid feedstocks. Explore novel technology for reforming bio-derived renewable liquid feedstocks that could result in a cost breakthrough. 	A, B, C, D, E, F

D. Feedstock Issues. Availability of some feedstocks is limited in certain areas. Feedstock-flexible reformers are needed to address location-specific feedstock supply issues. Effects of impurities on the system from multiple feedstocks as well as the effects of impurities from variations in single feedstocks need to be addressed in the reformer design.

E. Greenhouse Gas Emissions. Distributed natural gas reformers emit greenhouse gases. Feedstocks and/or technologies that can approach near zero net greenhouse gas emissions are needed.

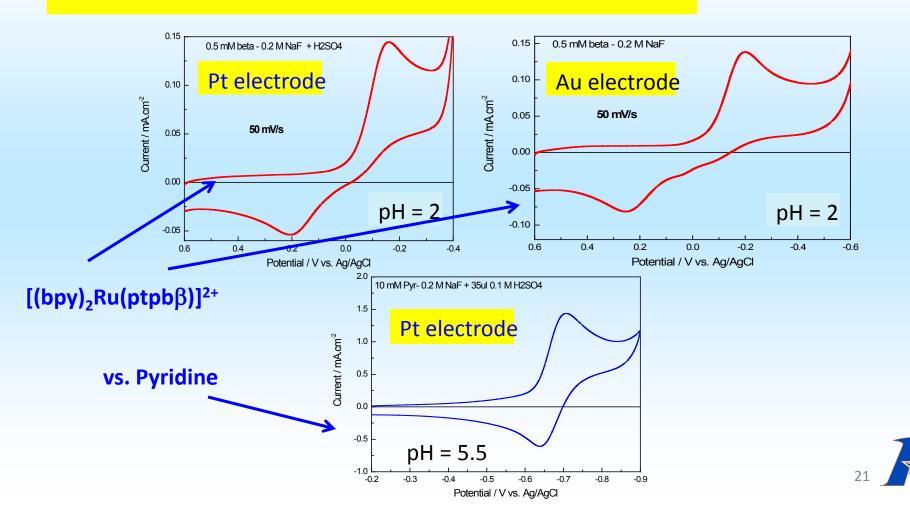


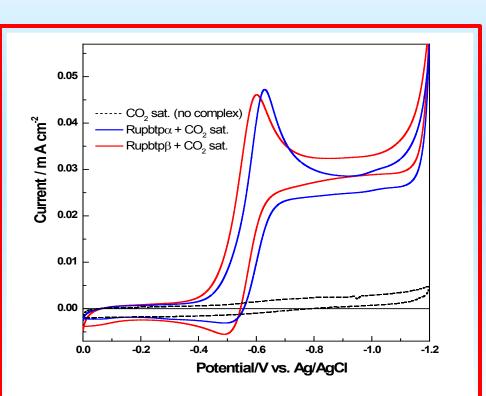
Task 2 Project Objectives:

Develop Homogeneous Molecular Photocatalysis to Convert CO₂ to methanol

	Project Milestones	Task Completion Date				
SubTask Number		Original Planned	Revised Planned	Actual	Percent Complete	Progress Notes
1	Synthesis of three Ru-photocatalysts	Dec 2009		Dec 2009	100	complete
	Electrocatalytic screening of three					
2	photocatalysts	March 2010		March 2010	100	complete
3	Photophysical Evaluation of the Photocatalysts	June 2010	Oct 2010	Oct 2010	100	complete
5	Photocalarysis	Julie 2010			100	complete
	Demonstration of Photocatalytic CO ₂					
4	reduction to MeOH	Sept 2010	Dec 2010	March 2011	100	complete
	Optimizing					
	/Screening of					
	Photochemical CO ₂					Nearly
5	reduction	Dec 2010	March 2011	May 2011	90	complete 🥤

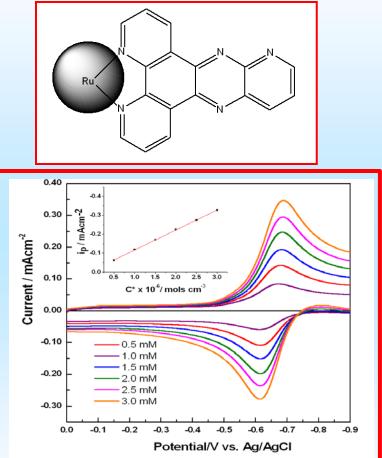
Proposed Homogeneous Photocatalytic Cycle for CO₂ Reduction to Methanol




Performance of $[(bpy)_2Ru(ptpb\beta)]^{2+}$ as Homogeneous Catalysts for CO₂ reduction

 $= [(bpy)_2Ru(pbtp\beta)]^{2+} + 1e^{-} + 1H^{+} \underset{(bpy)_2Ru(pbtp\beta H]^{2+}}{ = [(bpy)_2Ru(pbtp\beta H]^{2+}]^{2+} }$

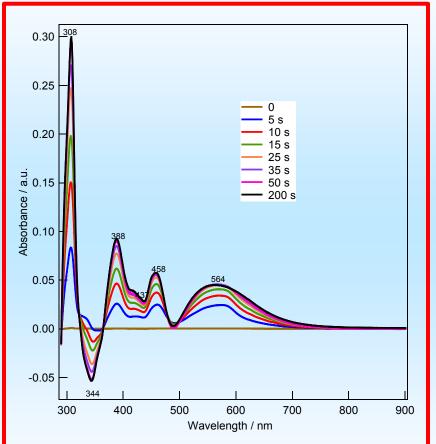
 $[(bpy)_2Ru(pbtp\beta H]^{2+} + CO_2 \rightarrow [(bpy)_2Ru(pbtp\beta)]^{2+} + CH_xO_{2-y}$


EC' mechanism: redox process followed by a catalytic chemical reaction

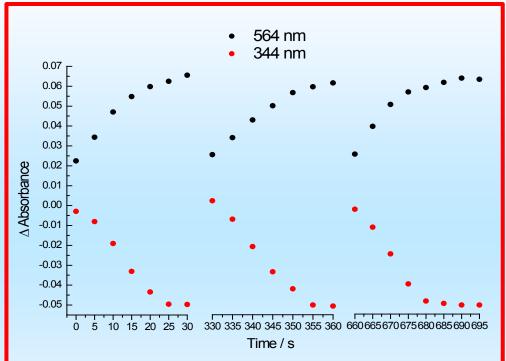
 $[(bpy)_2Ru(ptpb\alpha)]^{2+}$ vs. $[(bpy)_2Ru(ptpb\beta)]^{2+}$

Comparison of the voltammetric behavior of $[(bpy)_2Ru(ptpb\alpha)]^{2+}$ and $[(bpy)_2Ru(ptpb\beta)]^{2+}$ in CO₂ saturated solution. Scan rate = 5 mV/s. The voltammogram with CO₂ without any Ru complex is shown in black dot line.

Effect of concentration on the voltammetric behavior of the first electroreduction process of $[(bpy)_2Ru(ptpb\alpha)]^{2+}$ in DMF + 1 M buffered water (pH ~ 5.5). Scan rate = 50 mV/s. Working electrode = glassy carbon disk of 1 mm diameter.

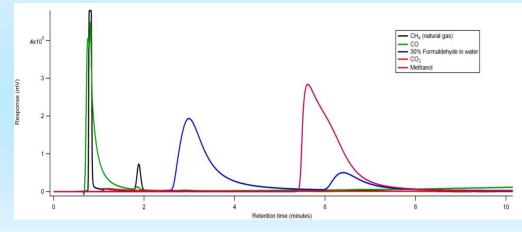

22

CO₂ Reduction via Electrocatalysis with Ruthenium Photocatalysts


Photoreduction of CO₂ by [(bpy)₂Ru(ptpb β)]^{2+ \Box}

Photochemistry of $[(bpy)_2Ru(ptpb\beta)]^{2+}$

CO₂ Photocatalytic Conversion


Difference absorbance spectra of $[(bpy)_2Rupbtp\beta]^{2+}$ (2.2 x 10⁻⁴ M) in **N**₂ saturated DMF/TEA (0.25 M)/H₂O (1 M) solutions during photolysis in the time domain for 0 to 200 s. Peaks pointing down indicate bands disappearing while those pointing up correspond to new bands appearing as a consequence of the photochemical reaction.

Demonstration of efficient photocatalytic cycles: The three consecutive and reversible photochemical changes of $[bpy)_2Ru(pbtp\beta)]^{2+}$ in **CO**₂ saturated DMF/TEA (0.25 M)/H₂O (1 M) are shown from left to right. The photoreduced catalyst is manifested in the growth of a band at 544 nm at expense of the 344 nm band characteristic of the unreduced photocatalyst. Each photoreduction requires 30 s to be completed and is separated from the next by a 5 min CO₂ bubbling under dark. The period of bubbling in the dark is provoking the removal of the reduced CO₂ species coordinated to the complex and thus releasing the complex to be able to work again as photocatalyst in the next irradiated cycle.

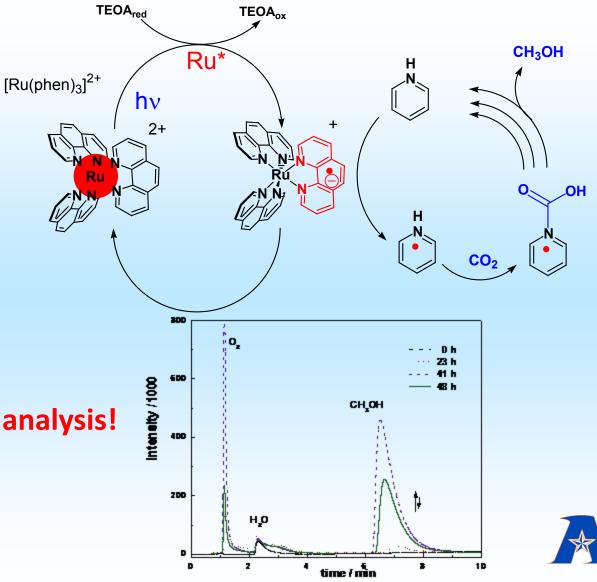
Photochemistryof $[(bpy)_2Ru(ptpb\alpha)]^{2+}$ and $[(bpy)_2Ru(ptpb\beta)]^{2+}$ in DMF/ water or MeCN /water

Conditions: In a typical experiment, a water jacketed reaction vessel of 50 mL total volume was filled with ~25 mL MeCN or DMF that is 1.0 M H_2O (pH 5), 0.20 M TEOA, and 100 μ M Ru complex. The solutions are degassed, saturated with CO₂, and then placed in the photochemical reactor for irradiation. Samples of both the headspace and solution are collected at various time periods and subjected to gas chromatographic (GC) analysis for product detection.

GC Analysis: Standards run using 1 C/minute temperature ramp from 110 C to 150 C using a Haysep DB column. Black line is methane, domestic natural gas, green line

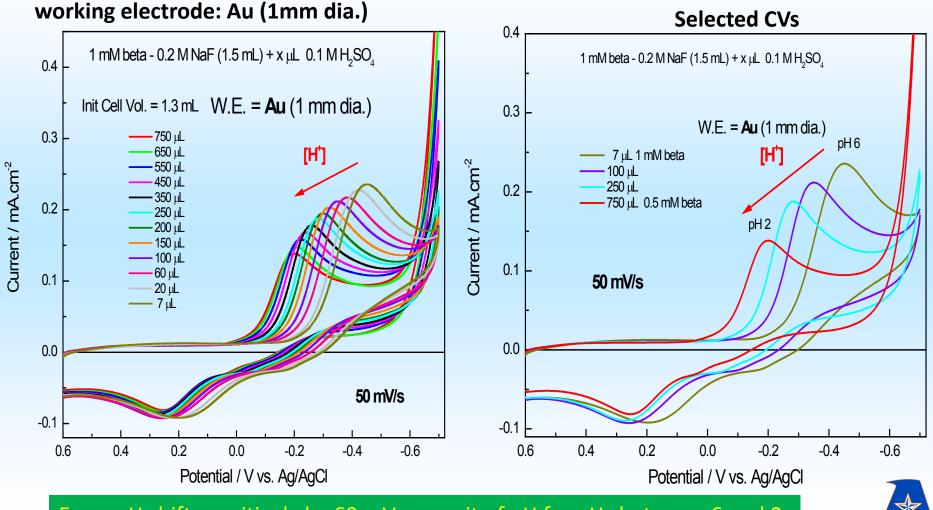
Custom Photoreactor: Water-jacketed glass reaction vessel with optical probe, stir bar and lamp consisting of 120 ultra bright diode in circular pattern (wavelength 470 nm)

 α and β complexes inactive at pH 5. Donor does not function below pH 5



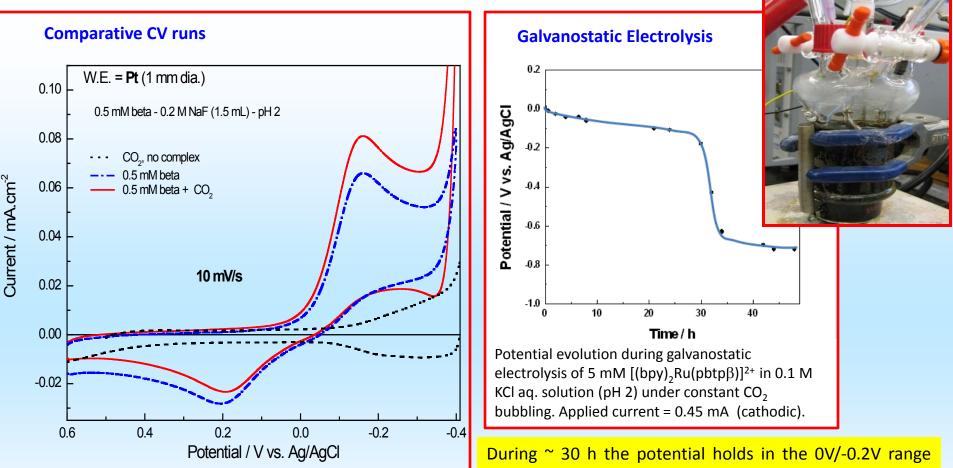
Photochemistry of [Ru(phen)₃]²⁺ and Pyridine in Water at pH 5

Conditions: 100 uM $[Ru(phen)_3]^{2+}$, 0.1M pyridine, 0.20 M TEOA, pH 5.0 then saturated with CO₂ by extensive bubbling and placed under CO₂ atm. We are currently working to quantify and optimize this reaction.


MeOH detected by GC analysis!

Effect of [H⁺] on the Electrocatalysis

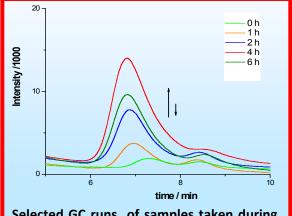
Cyclic voltammetry of $[(bpy)_2Ru(ptpb\beta)]^{2+}$ on a Au electrode


 $[(bpy)_2Ru(pbtp\beta)]^{2+} + 1e^- + 1H^+ \rightleftharpoons [(bpy)_2Ru(pbtp\beta H]^{2+}$

 E_p vs. pH shifts positively by 60 mV per unit of pH for pHs between 6 and 2

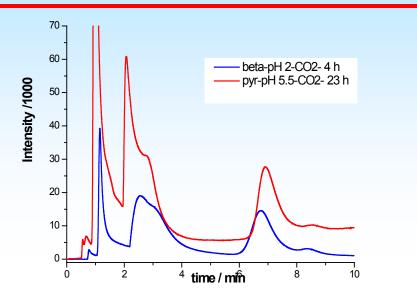
26

Electrocatalytic reduction of CO_2 by [(bpy)₂Ru(ptpb β)]²⁺ at pH 2



Voltammetric profiles of 0.5 mM $[(bpy)_2Ru(ptpb\beta)]^{2+}$ in 0.2 M NaF aq. media (adjusted to pH 2 with H₂SO₄) in N₂ (dash blue line) and CO₂ (b) saturated solutions respectively. Scan rate = 10 mV/s. A blank run of CO₂ saturated supporting electrolyte without the complex is shown in black dot line.

During ~ 30 h the potential holds in the OV/-0.2V range sustained by an EC' mechanism (1e⁻ reduction process forming [(bpy)₂Ru(pbtp β H)]²⁺ and followed by a chemical reaction that regenerate the initial [(bpy)₂Ru(pbtp β)]²⁺ complex). At times longer than 30 h the potential shifts to -0.7V because all the [(bpy)₂Ru(pbtp β)]²⁺ complex has been converted to [(bpy)₂Ru(pbtp β H)]²⁺


CH₃OH Detected as Product in Electrocatalysis

Method: Galvanostatic Electrolysis under CO₂ bubbling $[Ru(phen)_{2}pbtp\beta] = 5 mM$ Electrolyte: 0.1 M KCl (@ pH 2 w/1M HCl) Applied current : -0.45 mA W.E.= Pt foil (8.4 cm²) C.E.= Pt in separated compartment Ref. E.= Ag/AgCl, KCl sat. **GC-Mass Spectrometry** 31.16 of MeOH from (a) catalysis 31.03 31.48 32.15 28.19 32.17 29.21 28.13 28.10 29.22 29.06 32,18 54 30.11 28,96 32 28 30 31 29 m/z 31.18 GC-Mass Spectrometry 31.08 (b) of system 'spiked' with MeOH 31.22 31.<u>0</u>6 31.25 32.11 29.19 32.15 32.27 29,16 31.43 28.09 29.22 28.15 29.23 32 30.24 28.29 28 31 32 29 з'n Comparison of GC-MS data of a 2 h electrolysis sample (a) with authentic spectra of 10 mM CH₃OH(b)

Selected GC runs of samples taken during the Ru(phen)₂pbtp β^{2+} + CO₂ electrolysis.

GC comparison of CO_2 conversion to CH_3OH using 5 mM $Ru(phen)_2pbtp\beta^{2+}$ (blue line) and 10 mM pyridine (red line).

Task 2: Summary

- Ruthenium complexes with internal pyridyl functions prepared and characterized.
- Complexes competent for electrocatalytic CO₂ reduction to methanol. Optimum performance at pH 2.
- Ru α and Ru β photocatalysts inactive for photochemical CO₂ reduction at pH 5 and experimental constraints precluded testing at pH 2.
- Simple homoleptic complex, [Ru(phen)₃]²⁺, is able to function at pH 5 with pyridine added as co-catalyst.

Methanol is produced photochemically!!!

• Controlling variables including ligand isomerism (ptpb α vs ptpb β), solvent composition (DMF/MeCN/H₂O), solution pH, and choice of donor, need further investigation and optimization.

