

Solar Hydrogen Production with a Metal Oxide Based Thermochemical Cycle

Nathan Siegel, Tony McDaniel, Ivan Ermanoski

Sandia National Laboratories Solar Technologies Department

DOE Annual Merit Review 5/12/2011

Project ID: PD081

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 06/2004 ${\color{black}\bullet}$
- Project End Date: 10/01/2011*
- Project Complete: 80% ${}^{\bullet}$

Budget

- Total project funding to date
 - DOE share: \$3,452K (2004-2011)
 - Contractor share: 20% cost share on contracts
- Funding received in FY10: \$ 60K
- Funding for FY11: \$ 250K + \$620K (c/o)

Barriers

- Barriers addressed
 - U: High temperature thermochemical tech.

U.S. DEPARTMENT OF

- V: High temperature robust materials
- X: Coupling solar and • thermochemical cycles

Partners

Collaboration with the University of Colorado at Boulder (Al Weimer)

*Project continuation and direction determined annually by DOE

Conceptual Design and Operation of the Particle Reactor

U.S. DEPARTMENT OF

$$CeO_{2} \rightarrow CeO_{2-\delta} + \frac{\delta}{2}O_{2} \qquad ca..1500 \text{ }^{\circ}C$$
$$CeO_{2-\delta} + \delta \cdot H_{2}O \rightarrow CeO_{2} + \delta \cdot H_{2} \quad 600 - 1200 \text{ }^{\circ}C$$

- Direct solar irradiation of the reactive particles (thermal reduction)
- Spatial separation of reaction products (O₂ and H₂)
- Internal pressure separation
- Continuous flow
- Internal heat recovery (recuperation)
- Requires beam down optics

Relevance

- **Objective:** To develop a particle based thermochemical reactor for efficient solar hydrogen production. The successful development of this reactor will provide a solar interface for most two-step, non-volatile metal oxide cycles that are considered to be among the most efficient solar thermochemical processes.
- Targets:
 - \$3/gge at the solar plant gate by 2020 (DOE)
 - System level solar to hydrogen production efficiency ~ 20 % (annual average)
 - Maximizing efficiency is key to reducing costs
- FY 11 Accomplishments and impact:
 - Identified a reactor system concept capable of annual average solar to hydrogen production efficiency in excess of 20%
 - Reactor utilizes a particulate reactant to maximize kinetics and avoid issues with mechanical stress/failure
 - Built a test platform suited to the characterization of rapid thermochemical processes (materials development)

eere.energy.gov

Technical efforts target three areas

- Materials Discovery and characterization
 - Evaluate the kinetic and thermodynamic performance space of several reactant systems starting with cerium oxide
- Reactor Development
 - High temperature material compatibility
 - Packed bed solids conveyance
 - Advanced solar optics
 - Prototype
- System Analysis
 - High level performance models used to predict annual average performance
 - Detailed ASPEN flow sheets for reactor optimization

- Materials Discovery and Characterization
 - Laser heated reactor is operational: Heating rates of 100°C/s
 - Initial characterization of cerium oxide reduction and oxidation
- Reactor Development
 - Performance model has been developed
 - Particle transport properties have been measured (CeO₂ powder)
 - Particle packed-bed conveyor has been designed
 - 10 kW_{th} prototype design underway
- System Model
 - Annual average efficiency of a dish-based system has been calculated for a range of conditions

- Reactor model combined with TMY2 meteorological data to estimate hourly performance for an entire year
 - Results are geographically dependent
 - Model enables prediction of annual average efficiency
 - Dish-based reactor system model is complete, towers are next.
- System level model is being ported to Aspen Plus[®] for detailed design and analysis

System Level Performance (2 of 2)

- Cerium oxide powders (~5 µm) are the near term reactant
- Much effort has focused on conveying ceria powder within a reactor under the appropriate conditions
 - Solid phase transport of ceria powder has been measured including bulk density, permeability, and wall friction
 - Conveyor conceptual designs have been developed
- Compatibility of ceria powder with alumina and Haynes 214 was experimentally demonstrated to 1400°C
- Models of reactor operation have been developed
 - Recuperation is critical to efficient operation
 - There is room for improvement with respect to the reactive material performance

eere.energy.gov

Reactor Development (2 of 3)

- Particles can be vertically conveyed using an "Olds" elevator
 - Works for dish and tower platforms
- Steam is used to react, cool, and convey particles
- Models predict potentially high conversion efficiency with recuperation

U.S. DEPARTMENT OF

Reactor Development (3 of 3)

Energy Efficiency & Renewable Energy

- An on-sun prototype of the particle reactor is being designed
 - − T_{TR} = >1400°C, T_{OX} <1000°C,
 P_{tot} = 1000-10000 Pa
 - Reactor power input 10 kW_{th} on the solar furnace facility at SNL
 - Target hydrogen production between: 4-20 Liter/min
 - Ceria flow between 20-100 g/s
 - Conveyor and optics design underway

Spectral reflectivity of solar optics. Compound solar reflectivity for the prototype (two reflections) is 93%. Heat load on the second reflector is 0.7 kW, but its non-uniform. Data provided by NREL

Materials Discovery and Characterization (1 of 4)

U.S. DEPARTMENT OF ENERGY R

- Achieve heating rates in excess of 100 °C/s.
- Adjust radiative flux with optics and power control.
- 0 to >> 5000 suns
- Thermodynamic and kinetic characterizations over a range of conditions
- Investigate thermal reduction.
 - More closely mimic CSP conditions in a "model" environment.

Materials Discovery and Characterization (2 of 4)

form	mass (mg)	mole O (×10 ⁻⁶)	δ
disk	960	220	0.0394
felt	207	48	0.0398
powder	454	91	0.0350

U.S. DEPARTMENT OF

powder

- Disk 1000 µm thick.
- Felt primary fiber diameter \sim 10 $\mu m.$
- Powder primary particle diameter ~ 5 μ m.
- Solid-state dynamics at *these length scales and heating rates* do not limit reduction kinetics.
 - Rates scale with mass
 - Thermal conduction, vacancy diffusion, surface chemistry

Materials Discovery and Characterization (3 of 4)

temperature	total H ₂	peak H ₂
(°C)	(µmole/g)	(µmole/s/g)
1200	274	3.27
1100	273	4.76
1000	249	6.51
900	229	4.75
800	235	3.60
700	285	2.64

- Total H₂ produced is nearly constant but peak rates are variable.
 - Material is stable upon cycling
 - no degradation up to 30 cycles
- Detailed kinetic analysis is ongoing.
 - Transition between rate controlling mechanisms evident
 - T < 1000 °C and T > 1100 °C

Materials Discovery and Characterization (4 of 4)

- Varying heating rate and plateau temperature required for kinetic analysis.
 - Solid-state kinetic theory
 - Screen for rate limiting mechanisms
 - Evaluate kinetic parameters (activation energy)
- Develop kinetic model for predicting reduction behavior.
- Assess the extent of reduction likely achievable in CSP reactor concepts.

- Currently working with AI Weimer's group at the University of Colorado
 - Several students are working at SNL/CA in the area of materials discovery and characterization
- Jenike and Johanson Inc. are supporting the development of particle conveyor concepts.

- Continue materials characterization and identify more favorable systems
- Build and test a prototype reactor at the solar furnace
 - Additional technical challenges may become apparent during testing
- Perform a detailed design of a central receiver-based reactor.
 - Possibly results in a larger scale prototype
 - Provides a basis for detailed cost assessment

Summary

- A new solar thermochemical hydrogen production reactor was designed
 - The reactor has the potential to achieve heat to hydrogen conversion efficiency ~ 40 %,
 - > 20% solar to hydrogen efficiency at 100 Pa (2011 Milestone)
 - Includes all of the key performance attributes of a solar TC reactor
 - Scalable to central receivers
 - 10kW_{th} prototype design is underway
- Materials characterization using a laser heated reactor for evaluation of "realistic" material performance
 - Preliminary reaction kinetics for pure ceria have been measured
 - Full characterization of pure ceria powders in progress
- System models have been developed that predict annual average solar to hydrogen efficiency up to 23%

Thank you for your attention

Questions?

eere.energy.gov