2011 DOE Hydrogen and Fuel Cells Program Review

Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage

Drs. Zhili Feng (P.I.), John Jy-An Wang and Wei Zhang (Presenter)

Materials Science and Technology Division Oak Ridge National Laboratory

May 10, 2011

Project ID # PD088

This presentation does not contain any proprietary, confidential, or otherwise restricted information

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Overview

Timeline

- Project start date: Oct. 2010
- Project end date: Sep. 2013
- Percent complete: 10%

Budget

- Total project funding
 - DOE share: \$3,000K
 - Contractor share: 20%
- Funding received in FY10: \$89K
- Funding for FY11: \$400K

Barriers

- Barriers addressed
 - F. Gaseous hydrogen storage and tube trailer delivery cost
 - **G.** Storage tank materials and costs

Partners

- Project lead
 - ORNL (Oak Ridge National Laboratory)
- Interactions / collaborations
 - University of Michigan
 - MegaStir Technologies
 - ArcelorMittal
 - > Others
 - Details in Slide 19

Relevance

- Overall project objective:
 - Develop designs and fabrication technology for cost-effective highpressure hydrogen storage system for stationary applications
- Relevance to DOE FCT Program:
 - Meet or exceed DOE capital cost target of \$300/kg H₂ for off-board gaseous hydrogen storage tanks (DOE 2007 Target)

Table 3.2.2 Technical Targets for Hydrogen Delivery

Category	200	5 Status	FY 2012	FY 2015		
Storage Tank Purchased Capital Cost (\$/kg of H ₂ stored)	\$820		\$500	\$300		
		Ref. : Hy Year Res and Dem	ef.: Hydrogen Delivery, Multi- ear Research, Development nd Demonstration Plan, 2007.			

- Specific objectives during the current project year:
 - Develop conceptual engineering design of a bulk storage vessel for hydrogen capable of sustaining 5,000 psi design pressure
 - Demonstrate technical proof-of-feasibility for key design concepts and construction technologies

Potential Application - Fueling Stations

- Amount of H₂ in a stationary vessel = 1,500 kg
 - Refill 260 passenger cars per day (based on 5.6 kg H_2 tank per car)
- Baseline storage vessel:
 - Interior volume = 2,300 ft³ (65.1 m³)
 - Pressure = 5,000 psi (345 bar) @ room temperature

 H_2 refueling station

Pictures from DOE Fuel Cell Technologies Program Literature

Managed by UT-Battelle

Vessel Design and Fabrication Technology for H₂ Storage

Potential Application - Utility-scale Load Leveling and Peak Shaving in Renewable Energy Generation

• Powering 780 homes per day

Ref.: An Integrated Strategic Plan for the Research, Development, and Demonstration of Hydrogen and Fuel Cell Technologies, 2010 draft.

5 Managed by UT-Battelle for the U.S. Department of Energy

Approach - Overall Engineering Concept

Modular design

- Scalability and flexibility for cost optimization
- Individual vessels are self-contained and monitored for improved system safety
- Use of commodity materials (structural steels and concretes) for cost-effectiveness
 - Composite structure combining an inner steel pressure vessel with an outer pre-stress concrete pressure vessel
- Novel vessel design to avoid hydrogen embrittlement of high-strength structural steels
- Advanced fabrication technology for steel vessel
- Engineering of concrete / steel interface
- Embedded sensors to ensure the safe and reliable operation

Ballpark Estimate of Construction Cost

				Composite Vessel with		Composite Vessel with				
	All Steel Layered Vessel			Concrete Carrying 50% Hoop			Concrete Carrying 85% Hoop			
				Stress Only			and Axial Stresses			
	2005	2010	2015		2010	2015		2010	2015	
Target	Status	Target	Target		Target	Target		Target	Target	
H2 Pressure, psi	5000	7000	8700	10000	7000	8700	10000	7000	8700	10000
H2 Weight, kg	1400	1820	2125	2340	1820	2125	2340	1820	2125	2340
Steel Vessel										
Wall thickness, in	7.7	11.0	14.0	16.4	5.3	6.6	7.7	1.5	1.9	2.2
Weight, lb	194,500	285,700	370,400	439,900	185,500	236,300	276,900	51,900	64,900	75,000
Steel Vessel Cost, \$k	\$933.7	\$1,371.5	\$1,777.7	\$2,111.7	\$895.7	\$1,141.4	\$1,337.4	\$250.6	\$313.7	\$362.5
PCPV										
Wall thickness, in					24	24	24	48	48	48
Concrete, \$k					\$13.5	\$13.7	\$13.8	\$48.5	\$48.8	\$49.0
Steel Tendon, \$k					\$109.8	\$143.9	\$171.5	\$224.3	\$284.2	\$330.6
Rebar & Liner, \$k					\$61.0	\$62.0	\$62.8	\$117.0	\$117.7	\$118.2
PCPV Cost, \$k	\$0	\$0	\$0	\$0	\$184.3	\$219.6	\$248.1	\$389.8	\$450.7	\$497.8
Total Purchase Cost, \$k	\$933.7	\$1,371.5	\$1,777.7	\$2,111.7	\$1,080.0	\$1,361.0	\$1,585.5	<u>\$640.4</u>	\$764.4	\$860.3
Cost per kg H2, \$	\$667	\$754	\$837	\$902	<i>\$593</i>	\$640	\$678	\$352	\$360	\$368

The basic premises in cost analysis. (1) Reference vessel: a cylindrical vessel with semi-sphere heads, 12 ft diameter and 21.7 ft long (2000 ft³ storage volume), with piping attachment and maintenance access; (2) 50ksi inner steel vessel design allowable stress (SA724 100ksi grade high-strength steel) and 190ksi steel tendon design stress (Grade 270 steel), per ASME BPV Section VIII Division III design rules and material specification; (3) ASME BPV stress formulas to determine steel vessel wall thickness; (4) Layered steel vessel: steel plate cost at \$2/lb, labor cost at \$100/hr, and 6000 hours to fabricate the reference vessel, estimated by a major steel vessel construction; (5) PCPV: material and construction cost for rebar, high-strength tendon, and high-strength concrete are \$2.5/lb, \$3.5/lb, and \$400/cubic yard, respectively, based on 2007 steel and concrete market price; (6) The estimated costs do not include the expected additional cost reduction by FSW process, the flat steel ribbon cross-helical wound construction, and use of modern ultra-high strength steels.

Proposed composite vessel design and fabrication technology have a sound basis to meet or exceed DOE cost target for FY2010 ($$500/kg H_2$) and FY2015 ($$300/kg H_2$).

Technical Accomplishments - Modular Design for Scalability and Safety

- Four inner steel tanks per stationary storage vessel
- Interior volume for each tank

- 574.8 ft³ at 5,000 psi (i.e., 375 kg of CGH₂ @ room temperature)

 Tanks can be shut-down individually for improved reliability and safety

CGH₂ = Compressed gas hydrogen

Lowering Cost by Integration of Steel Vessel and Concrete Vessel

- ASME BPV Section VIII Codes:
 - Steel wall thickness dictated by the hoop stress induced by the CGH₂ pressure (P)

- Steel vessel with concrete reinforcement
 - Pre-stressed concrete designed to take 50% of the hoop stress
 - As a result, steel wall thickness reduced by half
 - Hoop stress split between steel and concrete as a design variable in cost modeling
 - Both structural steels and concrete are cost-effective commodity materials

Basis of Design – Steel Vessel

- Advantages:
 - Codes and Standards available for safe design and construction of high-pressure steel vessels
 - Well-characterized mechanical properties
 - Many decades of construction and operating experience (inspection, maintenance, etc.)
- Challenges:
 - Structural steels (especially high-strength grades) susceptible to hydrogen embrittlement (HE)
 - Cost going up non-linearly (e.g., parabolic) with increase of steel thickness

Layered Steel Vessels for further Cost Reduction and Ease of Fabrication

- History:
 - Since 1932
 - High-pressure ammonia synthesis for nitrites production
 - Aircraft carriers
- Relative low cost fabrication
- Acceptable code case by ASME BPV codes
- Autoclaves (ORNL's hydrogen permeation system)

Layered vessel construction from AMSE BPV Code Section VIII and an actual layered section welded to a solid section

Example of High-Pressure Layered Steel Vessel

 Picture showing a 96-ft long layered high-pressure steel vessel for ammonia conversion with operating pressure of 4000 psi and temperature of 450 F.

Fabrication Technology for Layered Steel Vessel based on Friction Stir Welding

for the U.S. Department of Energy

Fully-Automated and Field-Deployable Friction Stir Welding System for Joining Steel Sections

Example showing girth weld of API X65 steel pipe for natural gas transmission (collaboration with MegaStir)

14 Managed by UT-Battelle for the U.S. Department of Energy

Click the image to play a movie

clip of friction stir welding

Superior Joint Strength and Toughness attained by Friction Stir Welding

Weld regions exhibit better tensile strength compared to base metal.

NATIONAL National Laboratory

30

15 Managed by UT-Battelle for the U.S. Department of Energy

Vessel Safety Monitoring

- Layered steel vessel enables vessel safety/health monitoring
- Embedded sensors
 - Hydrogen sensors
 - Strain and stress sensors
 - Temperature sensors

Picture of thin-film sensor which is under evaluation for monitoring of strain and stress

Overview of Current Project Status and Future Work

- First year of substantial development
 - Developing the preliminary design and engineering analysis of the integrated hydrogen storage pressure vessel.
 - Cost modeling
 - Design trade-off and optimization studies
 - Investigating structural material performance and design at interface between steel core vessel and pre-stressed concrete containment vessel.
 - Developing the high-pressure permeation testing protocol for validation of hydrogen embrittlement mitigation.
 - Working with industry partners to finalize the work scope and cost-share.
- Years 2 and 3
 - Detailed design and engineering.
 - Mock-up vessel construction, testing and demonstration.

Collaborations - Project Team

Vessel Design and Fabrication Technology for H₂ Storage

Project Summary

Relevance:	Demonstrate off-board high-pressure storage vessel for CGH ₂ that can meet or exceed the relevant DOE cost target
Approach:	Develop composite vessels combining inner steel tanks and outer prestressed concrete pressure vessels
Progress to date:	 Overall vessel design and cost modeling Technical proof-of-feasibility studies: Hydrogen mitigation Advanced fabrication based on friction stir welding Embed sensors
Collaborations:	Active partnership with university and industry companies
Future research:	 Detailed design and engineering Mock-up vessel construction, testing and demonstration

Acknowledgements

- **Project Sponsor:** DOE Fuel Cell Technologies Program
- Sara Dillich, Monterey Gardiner and Scott Weil (DOE)
- Dave Stinton and Steve Pawel (ORNL)

